- Elasticsearch Guide: other versions:
- Getting Started
- Setup
- Breaking changes
- API Conventions
- Document APIs
- Search APIs
- Search
- URI Search
- Request Body Search
- Search Template
- Search Shards API
- Aggregations
- Min Aggregation
- Max Aggregation
- Sum Aggregation
- Avg Aggregation
- Stats Aggregation
- Extended Stats Aggregation
- Value Count Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Cardinality Aggregation
- Geo Bounds Aggregation
- Top hits Aggregation
- Scripted Metric Aggregation
- Global Aggregation
- Filter Aggregation
- Filters Aggregation
- Missing Aggregation
- Nested Aggregation
- Reverse nested Aggregation
- Children Aggregation
- Terms Aggregation
- Significant Terms Aggregation
- Range Aggregation
- Date Range Aggregation
- IPv4 Range Aggregation
- Histogram Aggregation
- Date Histogram Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Facets
- Suggesters
- Multi Search API
- Count API
- Search Exists API
- Validate API
- Explain API
- Percolator
- More Like This API
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Delete Mapping
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Warmers
- Status
- Indices Stats
- Indices Segments
- Indices Recovery
- Clear Cache
- Flush
- Refresh
- Optimize
- Upgrade
- Shadow replica indices
- cat APIs
- Cluster APIs
- Query DSL
- Queries
- Match Query
- Multi Match Query
- Bool Query
- Boosting Query
- Common Terms Query
- Constant Score Query
- Dis Max Query
- Filtered Query
- Fuzzy Like This Query
- Fuzzy Like This Field Query
- Function Score Query
- Fuzzy Query
- GeoShape Query
- Has Child Query
- Has Parent Query
- Ids Query
- Indices Query
- Match All Query
- More Like This Query
- Nested Query
- Prefix Query
- Query String Query
- Simple Query String Query
- Range Query
- Regexp Query
- Span First Query
- Span Multi Term Query
- Span Near Query
- Span Not Query
- Span Or Query
- Span Term Query
- Term Query
- Terms Query
- Top Children Query
- Wildcard Query
- Minimum Should Match
- Multi Term Query Rewrite
- Template Query
- Filters
- And Filter
- Bool Filter
- Exists Filter
- Geo Bounding Box Filter
- Geo Distance Filter
- Geo Distance Range Filter
- Geo Polygon Filter
- GeoShape Filter
- Geohash Cell Filter
- Has Child Filter
- Has Parent Filter
- Ids Filter
- Indices Filter
- Limit Filter
- Match All Filter
- Missing Filter
- Nested Filter
- Not Filter
- Or Filter
- Prefix Filter
- Query Filter
- Range Filter
- Regexp Filter
- Script Filter
- Term Filter
- Terms Filter
- Type Filter
- Queries
- Mapping
- Analysis
- Analyzers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Compound Word Token Filter
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Character Filters
- ICU Analysis Plugin
- Modules
- Index Modules
- Testing
- Glossary of terms
WARNING: Version 1.5 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Histogram Aggregation
editHistogram Aggregation
editA multi-bucket values source based aggregation that can be applied on numeric values extracted from the documents.
It dynamically builds fixed size (a.k.a. interval) buckets over the values. For example, if the documents have a field
that holds a price (numeric), we can configure this aggregation to dynamically build buckets with interval 5
(in case of price it may represent $5). When the aggregation executes, the price field of every document will be
evaluated and will be rounded down to its closest bucket - for example, if the price is 32
and the bucket size is 5
then the rounding will yield 30
and thus the document will "fall" into the bucket that is associated withe the key 30
.
To make this more formal, here is the rounding function that is used:
rem = value % interval if (rem < 0) { rem += interval } bucket_key = value - rem
The following snippet "buckets" the products based on their price
by interval of 50
:
{ "aggs" : { "prices" : { "histogram" : { "field" : "price", "interval" : 50 } } } }
And the following may be the response:
{ "aggregations": { "prices" : { "buckets": [ { "key": 0, "doc_count": 2 }, { "key": 50, "doc_count": 4 }, { "key": 150, "doc_count": 3 } ] } } }
The response above shows that none of the aggregated products has a price that falls within the range of [100 - 150)
.
By default, the response will only contain those buckets with a doc_count
greater than 0. It is possible change that
and request buckets with either a higher minimum count or even 0 (in which case elasticsearch will "fill in the gaps"
and create buckets with zero documents). This can be configured using the min_doc_count
setting:
{ "aggs" : { "prices" : { "histogram" : { "field" : "price", "interval" : 50, "min_doc_count" : 0 } } } }
Response:
{ "aggregations": { "prices" : { "buckets": [ { "key": 0, "doc_count": 2 }, { "key": 50, "doc_count": 4 }, { "key" : 100, "doc_count" : 0 }, { "key": 150, "doc_count": 3 } ] } } }
By default the date_/histogram returns all the buckets within the range of the data itself, that is, the documents with
the smallest values (on which with histogram) will determine the min bucket (the bucket with the smallest key) and the
documents with the highest values will determine the max bucket (the bucket with the highest key). Often, when when
requesting empty buckets ("min_doc_count" : 0
), this causes a confusion, specifically, when the data is also filtered.
To understand why, let’s look at an example:
Lets say the you’re filtering your request to get all docs with values between 0
and 500
, in addition you’d like
to slice the data per price using a histogram with an interval of 50
. You also specify "min_doc_count" : 0
as you’d
like to get all buckets even the empty ones. If it happens that all products (documents) have prices higher than 100
,
the first bucket you’ll get will be the one with 100
as its key. This is confusing, as many times, you’d also like
to get those buckets between 0 - 100
.
With extended_bounds
setting, you now can "force" the histogram aggregation to start building buckets on a specific
min
values and also keep on building buckets up to a max
value (even if there are no documents anymore). Using
extended_bounds
only makes sense when min_doc_count
is 0 (the empty buckets will never be returned if min_doc_count
is greater than 0).
Note that (as the name suggest) extended_bounds
is not filtering buckets. Meaning, if the extended_bounds.min
is higher
than the values extracted from the documents, the documents will still dictate what the first bucket will be (and the
same goes for the extended_bounds.max
and the last bucket). For filtering buckets, one should nest the histogram aggregation
under a range filter
aggregation with the appropriate from
/to
settings.
Example:
{ "query" : { "filtered" : { "filter": { "range" : { "price" : { "to" : "500" } } } } }, "aggs" : { "prices" : { "histogram" : { "field" : "price", "interval" : 50, "min_doc_count" : 0, "extended_bounds" : { "min" : 0, "max" : 500 } } } } }
Order
editBy default the returned buckets are sorted by their key
ascending, though the order behaviour can be controlled
using the order
setting.
Ordering the buckets by their key - descending:
{ "aggs" : { "prices" : { "histogram" : { "field" : "price", "interval" : 50, "order" : { "_key" : "desc" } } } } }
Ordering the buckets by their doc_count
- ascending:
{ "aggs" : { "prices" : { "histogram" : { "field" : "price", "interval" : 50, "order" : { "_count" : "asc" } } } } }
If the histogram aggregation has a direct metrics sub-aggregation, the latter can determine the order of the buckets:
{ "aggs" : { "prices" : { "histogram" : { "field" : "price", "interval" : 50, "order" : { "price_stats.min" : "asc" } }, "aggs" : { "price_stats" : { "stats" : {} } } } } }
The |
|
There is no need to configure the |
It is also possible to order the buckets based on a "deeper" aggregation in the hierarchy. This is supported as long
as the aggregations path are of a single-bucket type, where the last aggregation in the path may either by a single-bucket
one or a metrics one. If it’s a single-bucket type, the order will be defined by the number of docs in the bucket (i.e. doc_count
),
in case it’s a metrics one, the same rules as above apply (where the path must indicate the metric name to sort by in case of
a multi-value metrics aggregation, and in case of a single-value metrics aggregation the sort will be applied on that value).
The path must be defined in the following form:
AGG_SEPARATOR := '>' METRIC_SEPARATOR := '.' AGG_NAME := <the name of the aggregation> METRIC := <the name of the metric (in case of multi-value metrics aggregation)> PATH := <AGG_NAME>[<AGG_SEPARATOR><AGG_NAME>]*[<METRIC_SEPARATOR><METRIC>]
{ "aggs" : { "prices" : { "histogram" : { "field" : "price", "interval" : 50, "order" : { "promoted_products>rating_stats.avg" : "desc" } }, "aggs" : { "promoted_products" : { "filter" : { "term" : { "promoted" : true }}, "aggs" : { "rating_stats" : { "stats" : { "field" : "rating" }} } } } } } }
The above will sort the buckets based on the avg rating among the promoted products
Minimum document count
editIt is possible to only return buckets that have a document count that is greater than or equal to a configured
limit through the min_doc_count
option.
{ "aggs" : { "prices" : { "histogram" : { "field" : "price", "interval" : 50, "min_doc_count": 10 } } } }
The above aggregation would only return buckets that contain 10 documents or more. Default value is 1
.
The special value 0
can be used to add empty buckets to the response between the minimum and the maximum buckets.
Here is an example of what the response could look like:
{ "aggregations": { "prices": { "buckets": { "0": { "key": 0, "doc_count": 2 }, "50": { "key": 50, "doc_count": 0 }, "150": { "key": 150, "doc_count": 3 }, "200": { "key": 150, "doc_count": 0 }, "250": { "key": 150, "doc_count": 0 }, "300": { "key": 150, "doc_count": 1 } } } } }
Response Format
editBy default, the buckets are returned as an ordered array. It is also possible to request the response as a hash instead keyed by the buckets keys:
{ "aggs" : { "prices" : { "histogram" : { "field" : "price", "interval" : 50, "keyed" : true } } } }
Response:
{ "aggregations": { "prices": { "buckets": { "0": { "key": 0, "doc_count": 2 }, "50": { "key": 50, "doc_count": 4 }, "150": { "key": 150, "doc_count": 3 } } } } }
On this page