- Elasticsearch Guide: other versions:
- Getting Started
- Setup
- Breaking changes
- Breaking changes in 2.2
- Breaking changes in 2.1
- Breaking changes in 2.0
- Removed features
- Network changes
- Multiple
path.data
striping - Mapping changes
- CRUD and routing changes
- Query DSL changes
- Search changes
- Aggregation changes
- Parent/Child changes
- Scripting changes
- Index API changes
- Snapshot and Restore changes
- Plugin and packaging changes
- Setting changes
- Stats, info, and
cat
changes - Java API changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IPv4 Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Serial Differencing Aggregation
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Warmers
- Shadow replica indices
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- Optimize
- Upgrade
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Field datatypes
- Meta-Fields
- Mapping parameters
analyzer
boost
coerce
copy_to
doc_values
dynamic
enabled
fielddata
format
geohash
geohash_precision
geohash_prefix
ignore_above
ignore_malformed
include_in_all
index
index_options
lat_lon
fields
norms
null_value
position_increment_gap
precision_step
properties
search_analyzer
similarity
store
term_vector
- Dynamic Mapping
- Transform
- Analysis
- Analyzers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Compound Word Token Filter
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Character Filters
- Modules
- Index Modules
- Testing
- Glossary of terms
- Release Notes
WARNING: Version 2.2 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Cardinality Aggregation
editCardinality Aggregation
editA single-value
metrics aggregation that calculates an approximate count of
distinct values. Values can be extracted either from specific fields in the
document or generated by a script.
Assume you are indexing books and would like to count the unique authors that match a query:
{ "aggs" : { "author_count" : { "cardinality" : { "field" : "author" } } } }
Precision control
editThis aggregation also supports the precision_threshold
option:
The precision_threshold
option is specific to the current internal implementation of the cardinality
agg, which may change in the future
{ "aggs" : { "author_count" : { "cardinality" : { "field" : "author_hash", "precision_threshold": 100 } } } }
The |
Counts are approximate
editComputing exact counts requires loading values into a hash set and returning its size. This doesn’t scale when working on high-cardinality sets and/or large values as the required memory usage and the need to communicate those per-shard sets between nodes would utilize too many resources of the cluster.
This cardinality
aggregation is based on the
HyperLogLog++
algorithm, which counts based on the hashes of the values with some interesting
properties:
- configurable precision, which decides on how to trade memory for accuracy,
- excellent accuracy on low-cardinality sets,
- fixed memory usage: no matter if there are tens or billions of unique values, memory usage only depends on the configured precision.
For a precision threshold of c
, the implementation that we are using requires
about c * 8
bytes.
The following chart shows how the error varies before and after the threshold:
For all 3 thresholds, counts have been accurate up to the configured threshold (although not guaranteed, this is likely to be the case). Please also note that even with a threshold as low as 100, the error remains under 5%, even when counting millions of items.
Pre-computed hashes
editOn string fields that have a high cardinality, it might be faster to store the
hash of your field values in your index and then run the cardinality aggregation
on this field. This can either be done by providing hash values from client-side
or by letting elasticsearch compute hash values for you by using the
mapper-murmur3
plugin.
Pre-computing hashes is usually only useful on very large and/or high-cardinality fields as it saves CPU and memory. However, on numeric fields, hashing is very fast and storing the original values requires as much or less memory than storing the hashes. This is also true on low-cardinality string fields, especially given that those have an optimization in order to make sure that hashes are computed at most once per unique value per segment.
Script
editThe cardinality
metric supports scripting, with a noticeable performance hit
however since hashes need to be computed on the fly.
{ "aggs" : { "author_count" : { "cardinality" : { "script": "doc['author.first_name'].value + ' ' + doc['author.last_name'].value" } } } }
This will interpret the script
parameter as an inline
script with the default script language and no script parameters. To use a file script use the following syntax:
{ "aggs" : { "author_count" : { "cardinality" : { "script" : { "file": "my_script", "params": { "first_name_field": "author.first_name", "last_name_field": "author.last_name" } } } } } }
for indexed scripts replace the file
parameter with an id
parameter.
Missing value
editThe missing
parameter defines how documents that are missing a value should be treated.
By default they will be ignored but it is also possible to treat them as if they
had a value.