- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Set up X-Pack
- Breaking changes
- Breaking changes in 5.5
- Breaking changes in 5.4
- Breaking changes in 5.3
- Breaking changes in 5.2
- Breaking changes in 5.1
- Breaking changes in 5.0
- Search and Query DSL changes
- Mapping changes
- Percolator changes
- Suggester changes
- Index APIs changes
- Document API changes
- Settings changes
- Allocation changes
- HTTP changes
- REST API changes
- CAT API changes
- Java API changes
- Packaging
- Plugin changes
- Filesystem related changes
- Path to data on disk
- Aggregation changes
- Script related changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Shadow replica indices
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- X-Pack APIs
- Info API
- Explore API
- Machine Learning APIs
- Close Jobs
- Create Datafeeds
- Create Jobs
- Delete Datafeeds
- Delete Jobs
- Delete Model Snapshots
- Flush Jobs
- Get Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Security APIs
- Watcher APIs
- Definitions
- How To
- Testing
- Glossary of terms
- Release Notes
- 5.5.3 Release Notes
- 5.5.2 Release Notes
- 5.5.1 Release Notes
- 5.5.0 Release Notes
- 5.4.3 Release Notes
- 5.4.2 Release Notes
- 5.4.1 Release Notes
- 5.4.0 Release Notes
- 5.3.3 Release Notes
- 5.3.2 Release Notes
- 5.3.1 Release Notes
- 5.3.0 Release Notes
- 5.2.2 Release Notes
- 5.2.1 Release Notes
- 5.2.0 Release Notes
- 5.1.2 Release Notes
- 5.1.1 Release Notes
- 5.1.0 Release Notes
- 5.0.2 Release Notes
- 5.0.1 Release Notes
- 5.0.0 Combined Release Notes
- 5.0.0 GA Release Notes
- 5.0.0-rc1 Release Notes
- 5.0.0-beta1 Release Notes
- 5.0.0-alpha5 Release Notes
- 5.0.0-alpha4 Release Notes
- 5.0.0-alpha3 Release Notes
- 5.0.0-alpha2 Release Notes
- 5.0.0-alpha1 Release Notes
- 5.0.0-alpha1 Release Notes (Changes previously released in 2.x)
WARNING: Version 5.5 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Edge NGram Tokenizer
editEdge NGram Tokenizer
editThe edge_ngram
tokenizer first breaks text down into words whenever it
encounters one of a list of specified characters, then it emits
N-grams of each word where the start of
the N-gram is anchored to the beginning of the word.
Edge N-Grams are useful for search-as-you-type queries.
When you need search-as-you-type for text which has a widely known order, such as movie or song titles, the completion suggester is a much more efficient choice than edge N-grams. Edge N-grams have the advantage when trying to autocomplete words that can appear in any order.
Example output
editWith the default settings, the edge_ngram
tokenizer treats the initial text as a
single token and produces N-grams with minimum length 1
and maximum length
2
:
POST _analyze { "tokenizer": "edge_ngram", "text": "Quick Fox" }
The above sentence would produce the following terms:
[ Q, Qu ]
These default gram lengths are almost entirely useless. You need to
configure the edge_ngram
before using it.
Configuration
editThe edge_ngram
tokenizer accepts the following parameters:
|
Minimum length of characters in a gram. Defaults to |
|
Maximum length of characters in a gram. Defaults to |
|
Character classes that should be included in a token. Elasticsearch
will split on characters that don’t belong to the classes specified.
Defaults to Character classes may be any of the following:
|
Example configuration
editIn this example, we configure the edge_ngram
tokenizer to treat letters and
digits as tokens, and to produce grams with minimum length 2
and maximum
length 10
:
PUT my_index { "settings": { "analysis": { "analyzer": { "my_analyzer": { "tokenizer": "my_tokenizer" } }, "tokenizer": { "my_tokenizer": { "type": "edge_ngram", "min_gram": 2, "max_gram": 10, "token_chars": [ "letter", "digit" ] } } } } } POST my_index/_analyze { "analyzer": "my_analyzer", "text": "2 Quick Foxes." }
The above example produces the following terms:
[ Qu, Qui, Quic, Quick, Fo, Fox, Foxe, Foxes ]
Usually we recommend using the same analyzer
at index time and at search
time. In the case of the edge_ngram
tokenizer, the advice is different. It
only makes sense to use the edge_ngram
tokenizer at index time, to ensure
that partial words are available for matching in the index. At search time,
just search for the terms the user has typed in, for instance: Quick Fo
.
Below is an example of how to set up a field for search-as-you-type:
PUT my_index { "settings": { "analysis": { "analyzer": { "autocomplete": { "tokenizer": "autocomplete", "filter": [ "lowercase" ] }, "autocomplete_search": { "tokenizer": "lowercase" } }, "tokenizer": { "autocomplete": { "type": "edge_ngram", "min_gram": 2, "max_gram": 10, "token_chars": [ "letter" ] } } } }, "mappings": { "doc": { "properties": { "title": { "type": "text", "analyzer": "autocomplete", "search_analyzer": "autocomplete_search" } } } } } PUT my_index/doc/1 { "title": "Quick Foxes" } POST my_index/_refresh GET my_index/_search { "query": { "match": { "title": { "query": "Quick Fo", "operator": "and" } } } }
On this page