- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Set up X-Pack
- Breaking changes
- Breaking changes in 5.5
- Breaking changes in 5.4
- Breaking changes in 5.3
- Breaking changes in 5.2
- Breaking changes in 5.1
- Breaking changes in 5.0
- Search and Query DSL changes
- Mapping changes
- Percolator changes
- Suggester changes
- Index APIs changes
- Document API changes
- Settings changes
- Allocation changes
- HTTP changes
- REST API changes
- CAT API changes
- Java API changes
- Packaging
- Plugin changes
- Filesystem related changes
- Path to data on disk
- Aggregation changes
- Script related changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Shadow replica indices
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- X-Pack APIs
- Info API
- Explore API
- Machine Learning APIs
- Close Jobs
- Create Datafeeds
- Create Jobs
- Delete Datafeeds
- Delete Jobs
- Delete Model Snapshots
- Flush Jobs
- Get Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Security APIs
- Watcher APIs
- Definitions
- How To
- Testing
- Glossary of terms
- Release Notes
- 5.5.3 Release Notes
- 5.5.2 Release Notes
- 5.5.1 Release Notes
- 5.5.0 Release Notes
- 5.4.3 Release Notes
- 5.4.2 Release Notes
- 5.4.1 Release Notes
- 5.4.0 Release Notes
- 5.3.3 Release Notes
- 5.3.2 Release Notes
- 5.3.1 Release Notes
- 5.3.0 Release Notes
- 5.2.2 Release Notes
- 5.2.1 Release Notes
- 5.2.0 Release Notes
- 5.1.2 Release Notes
- 5.1.1 Release Notes
- 5.1.0 Release Notes
- 5.0.2 Release Notes
- 5.0.1 Release Notes
- 5.0.0 Combined Release Notes
- 5.0.0 GA Release Notes
- 5.0.0-rc1 Release Notes
- 5.0.0-beta1 Release Notes
- 5.0.0-alpha5 Release Notes
- 5.0.0-alpha4 Release Notes
- 5.0.0-alpha3 Release Notes
- 5.0.0-alpha2 Release Notes
- 5.0.0-alpha1 Release Notes
- 5.0.0-alpha1 Release Notes (Changes previously released in 2.x)
WARNING: Version 5.5 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Cluster Level Shard Allocation
editCluster Level Shard Allocation
editShard allocation is the process of allocating shards to nodes. This can happen during initial recovery, replica allocation, rebalancing, or when nodes are added or removed.
Shard Allocation Settings
editThe following dynamic settings may be used to control shard allocation and recovery:
-
cluster.routing.allocation.enable
-
Enable or disable allocation for specific kinds of shards:
-
all
- (default) Allows shard allocation for all kinds of shards. -
primaries
- Allows shard allocation only for primary shards. -
new_primaries
- Allows shard allocation only for primary shards for new indices. -
none
- No shard allocations of any kind are allowed for any indices.
This setting does not affect the recovery of local primary shards when restarting a node. A restarted node that has a copy of an unassigned primary shard will recover that primary immediately, assuming that its allocation id matches one of the active allocation ids in the cluster state.
-
-
cluster.routing.allocation.node_concurrent_incoming_recoveries
-
How many concurrent incoming shard recoveries are allowed to happen on a node. Incoming recoveries are the recoveries
where the target shard (most likely the replica unless a shard is relocating) is allocated on the node. Defaults to
2
. -
cluster.routing.allocation.node_concurrent_outgoing_recoveries
-
How many concurrent outgoing shard recoveries are allowed to happen on a node. Outgoing recoveries are the recoveries
where the source shard (most likely the primary unless a shard is relocating) is allocated on the node. Defaults to
2
. -
cluster.routing.allocation.node_concurrent_recoveries
-
A shortcut to set both
cluster.routing.allocation.node_concurrent_incoming_recoveries
andcluster.routing.allocation.node_concurrent_outgoing_recoveries
. -
cluster.routing.allocation.node_initial_primaries_recoveries
-
While the recovery of replicas happens over the network, the recovery of
an unassigned primary after node restart uses data from the local disk.
These should be fast so more initial primary recoveries can happen in
parallel on the same node. Defaults to
4
. -
cluster.routing.allocation.same_shard.host
-
Allows to perform a check to prevent allocation of multiple instances of
the same shard on a single host, based on host name and host address.
Defaults to
false
, meaning that no check is performed by default. This setting only applies if multiple nodes are started on the same machine.
Shard Rebalancing Settings
editThe following dynamic settings may be used to control the rebalancing of shards across the cluster:
-
cluster.routing.rebalance.enable
-
Enable or disable rebalancing for specific kinds of shards:
-
all
- (default) Allows shard balancing for all kinds of shards. -
primaries
- Allows shard balancing only for primary shards. -
replicas
- Allows shard balancing only for replica shards. -
none
- No shard balancing of any kind are allowed for any indices.
-
-
cluster.routing.allocation.allow_rebalance
-
Specify when shard rebalancing is allowed:
-
always
- Always allow rebalancing. -
indices_primaries_active
- Only when all primaries in the cluster are allocated. -
indices_all_active
- (default) Only when all shards (primaries and replicas) in the cluster are allocated.
-
-
cluster.routing.allocation.cluster_concurrent_rebalance
-
Allow to control how many concurrent shard rebalances are
allowed cluster wide. Defaults to
2
. Note that this setting only controls the number of concurrent shard relocations due to imbalances in the cluster. This setting does not limit shard relocations due to allocation filtering or forced awareness.
Shard Balancing Heuristics
editThe following settings are used together to determine where to place each
shard. The cluster is balanced when no allowed rebalancing operation can bring the weight
of any node closer to the weight of any other node by more than the balance.threshold
.
-
cluster.routing.allocation.balance.shard
-
Defines the weight factor for the total number of shards allocated on a node
(float). Defaults to
0.45f
. Raising this raises the tendency to equalize the number of shards across all nodes in the cluster. -
cluster.routing.allocation.balance.index
-
Defines the weight factor for the number of shards per index allocated
on a specific node (float). Defaults to
0.55f
. Raising this raises the tendency to equalize the number of shards per index across all nodes in the cluster. -
cluster.routing.allocation.balance.threshold
-
Minimal optimization value of operations that should be performed (non
negative float). Defaults to
1.0f
. Raising this will cause the cluster to be less aggressive about optimizing the shard balance.
Regardless of the result of the balancing algorithm, rebalancing might not be allowed due to forced awareness or allocation filtering.