- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Installing X-Pack
- Set up X-Pack
- Configuring X-Pack Java Clients
- X-Pack Settings
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Standard Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- Whitespace Tokenizer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Tokenizer
- Pattern Tokenizer
- Char Group Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Multiplexer Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Exclude mode settings example
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Remove Duplicates Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Bytes Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- URL Decode Processor
- SQL Access
- Monitor a cluster
- Rolling up historical data
- Secure a cluster
- Overview
- Configuring Security
- Encrypting communications in Elasticsearch
- Encrypting Communications in an Elasticsearch Docker Container
- Enabling cipher suites for stronger encryption
- Separating node-to-node and client traffic
- Configuring an Active Directory realm
- Configuring a file realm
- Configuring an LDAP realm
- Configuring a native realm
- Configuring a PKI realm
- Configuring a SAML realm
- Configuring a Kerberos realm
- FIPS 140-2
- Security settings
- Auditing settings
- Getting started with security
- How security works
- User authentication
- Built-in users
- Internal users
- Realms
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- User authorization
- Auditing security events
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, tribe, clients, and integrations
- Reference
- Troubleshooting
- Can’t log in after upgrading to 6.4.3
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on Cluster and Index Events
- X-Pack APIs
- Info API
- Explore API
- Licensing APIs
- Migration APIs
- Machine Learning APIs
- Add Events to Calendar
- Add Jobs to Calendar
- Close Jobs
- Create Calendar
- Create Datafeeds
- Create Filter
- Create Jobs
- Delete Calendar
- Delete Datafeeds
- Delete Events from Calendar
- Delete Filter
- Delete Jobs
- Delete Jobs from Calendar
- Delete Model Snapshots
- Flush Jobs
- Forecast Jobs
- Get Calendars
- Get Buckets
- Get Overall Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Scheduled Events
- Get Filters
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Filter
- Update Jobs
- Update Model Snapshots
- Rollup APIs
- Security APIs
- Create or update application privileges API
- Authenticate API
- Change passwords API
- Clear Cache API
- Create or update role mappings API
- Clear roles cache API
- Create or update roles API
- Create or update users API
- Delete application privileges API
- Delete role mappings API
- Delete roles API
- Delete users API
- Disable users API
- Enable users API
- Get application privileges API
- Get role mappings API
- Get roles API
- Get token API
- Get users API
- Has Privileges API
- Invalidate token API
- SSL Certificate API
- Watcher APIs
- Definitions
- Command line tools
- How To
- Testing
- Glossary of terms
- Release Highlights
- Breaking changes
- Release Notes
- Elasticsearch version 6.4.3
- Elasticsearch version 6.4.2
- Elasticsearch version 6.4.1
- Elasticsearch version 6.4.0
- Elasticsearch version 6.3.2
- Elasticsearch version 6.3.1
- Elasticsearch version 6.3.0
- Elasticsearch version 6.2.4
- Elasticsearch version 6.2.3
- Elasticsearch version 6.2.2
- Elasticsearch version 6.2.1
- Elasticsearch version 6.2.0
- Elasticsearch version 6.1.4
- Elasticsearch version 6.1.3
- Elasticsearch version 6.1.2
- Elasticsearch version 6.1.1
- Elasticsearch version 6.1.0
- Elasticsearch version 6.0.1
- Elasticsearch version 6.0.0
- Elasticsearch version 6.0.0-rc2
- Elasticsearch version 6.0.0-rc1
- Elasticsearch version 6.0.0-beta2
- Elasticsearch version 6.0.0-beta1
- Elasticsearch version 6.0.0-alpha2
- Elasticsearch version 6.0.0-alpha1
- Elasticsearch version 6.0.0-alpha1 (Changes previously released in 5.x)
Transport
editTransport
editThe transport module is used for internal communication between nodes within the cluster. Each call that goes from one node to the other uses the transport module (for example, when an HTTP GET request is processed by one node, and should actually be processed by another node that holds the data).
The transport mechanism is completely asynchronous in nature, meaning that there is no blocking thread waiting for a response. The benefit of using asynchronous communication is first solving the C10k problem, as well as being the ideal solution for scatter (broadcast) / gather operations such as search in Elasticsearch.
TCP Transport
editThe TCP transport is an implementation of the transport module using TCP. It allows for the following settings:
Setting | Description |
---|---|
|
A bind port range. Defaults to |
|
The port that other nodes in the cluster
should use when communicating with this node. Useful when a cluster node
is behind a proxy or firewall and the |
|
The host address to bind the transport service to. Defaults to |
|
The host address to publish for nodes in the cluster to connect to. Defaults to |
|
Used to set the |
|
The socket connect timeout setting (in
time setting format). Defaults to |
|
Set to |
|
Schedule a regular application-level ping message
to ensure that transport connections between nodes are kept alive. Defaults to
|
It also uses the common network settings.
TCP Transport Profiles
editElasticsearch allows you to bind to multiple ports on different interfaces by the use of transport profiles. See this example configuration
transport.profiles.default.port: 9300-9400 transport.profiles.default.bind_host: 10.0.0.1 transport.profiles.client.port: 9500-9600 transport.profiles.client.bind_host: 192.168.0.1 transport.profiles.dmz.port: 9700-9800 transport.profiles.dmz.bind_host: 172.16.1.2
The default
profile is special. It is used as a fallback for any other
profiles, if those do not have a specific configuration setting set, and is how
this node connects to other nodes in the cluster.
The following parameters can be configured on each transport profile, as in the example above:
-
port
: The port to bind to -
bind_host
: The host to bind -
publish_host
: The host which is published in informational APIs -
tcp_no_delay
: Configures theTCP_NO_DELAY
option for this socket -
tcp_keep_alive
: Configures theSO_KEEPALIVE
option for this socket -
reuse_address
: Configures theSO_REUSEADDR
option for this socket -
tcp_send_buffer_size
: Configures the send buffer size of the socket -
tcp_receive_buffer_size
: Configures the receive buffer size of the socket
Long-lived idle connections
editElasticsearch opens a number of long-lived TCP connections between each pair of
nodes in the cluster, and some of these connections may be idle for an extended
period of time. Nonetheless, Elasticsearch requires these connections to remain
open, and it can disrupt the operation of the cluster if any inter-node
connections are closed by an external influence such as a firewall. It is
important to configure your network to preserve long-lived idle connections
between Elasticsearch nodes, for instance by leaving tcp_keep_alive
enabled
and ensuring that the keepalive interval is shorter than any timeout that might
cause idle connections to be closed, or by setting transport.ping_schedule
if
keepalives cannot be configured.
Transport Tracer
editThe transport module has a dedicated tracer logger which, when activated, logs incoming and out going requests. The log can be dynamically activated
by settings the level of the org.elasticsearch.transport.TransportService.tracer
logger to TRACE
:
PUT _cluster/settings { "transient" : { "logger.org.elasticsearch.transport.TransportService.tracer" : "TRACE" } }
You can also control which actions will be traced, using a set of include and exclude wildcard patterns. By default every request will be traced except for fault detection pings:
PUT _cluster/settings { "transient" : { "transport.tracer.include" : "*", "transport.tracer.exclude" : "internal:discovery/zen/fd*" } }