- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.11
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Advanced configuration settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Search your data
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geotile grid
- Global
- Histogram
- IP range
- Missing
- Nested
- Parent
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Bucket aggregations
- EQL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Overview
- Concepts
- Automate rollover
- Customize built-in ILM policies
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Resolve lifecycle policy execution errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Autoscaling
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Granting access to Stack Management features
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and index aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watch for cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- Autoscaling APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- Graph explore API
- Index APIs
- Analyze
- Bulk index alias
- Clear cache
- Clone index
- Close index
- Create index
- Create or update component template
- Create or update index alias
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete index
- Delete index alias
- Delete index template
- Delete index template (legacy)
- Flush
- Force merge
- Freeze index
- Get component template
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover index
- Shrink index
- Simulate index
- Simulate template
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create trained models
- Update data frame analytics jobs
- Delete data frame analytics jobs
- Delete trained models
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get trained models
- Get trained models stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML service provider metadata
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 7.11.2
- Elasticsearch version 7.11.1
- Elasticsearch version 7.11.0
- Elasticsearch version 7.10.2
- Elasticsearch version 7.10.1
- Elasticsearch version 7.10.0
- Elasticsearch version 7.9.3
- Elasticsearch version 7.9.2
- Elasticsearch version 7.9.1
- Elasticsearch version 7.9.0
- Elasticsearch version 7.8.1
- Elasticsearch version 7.8.0
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
- Dependencies and versions
Multi-match query
editMulti-match query
editThe multi_match
query builds on the match
query
to allow multi-field queries:
GET /_search { "query": { "multi_match" : { "query": "this is a test", "fields": [ "subject", "message" ] } } }
fields
and per-field boosting
editFields can be specified with wildcards, eg:
GET /_search { "query": { "multi_match" : { "query": "Will Smith", "fields": [ "title", "*_name" ] } } }
Individual fields can be boosted with the caret (^
) notation:
GET /_search { "query": { "multi_match" : { "query" : "this is a test", "fields" : [ "subject^3", "message" ] } } }
The query multiplies the |
If no fields
are provided, the multi_match
query defaults to the index.query.default_field
index settings, which in turn defaults to *
. *
extracts all fields in the mapping that
are eligible to term queries and filters the metadata fields. All extracted fields are then
combined to build a query.
There is a limit on the number of fields that can be queried
at once. It is defined by the indices.query.bool.max_clause_count
Search settings
which defaults to 1024.
Types of multi_match
query:
editThe way the multi_match
query is executed internally depends on the type
parameter, which can be set to:
|
(default) Finds documents which match any field, but
uses the |
|
Finds documents which match any field and combines
the |
|
Treats fields with the same |
|
Runs a |
|
Runs a |
|
Creates a |
best_fields
editThe best_fields
type is most useful when you are searching for multiple
words best found in the same field. For instance “brown fox” in a single
field is more meaningful than “brown” in one field and “fox” in the other.
The best_fields
type generates a match
query for
each field and wraps them in a dis_max
query, to
find the single best matching field. For instance, this query:
GET /_search { "query": { "multi_match" : { "query": "brown fox", "type": "best_fields", "fields": [ "subject", "message" ], "tie_breaker": 0.3 } } }
would be executed as:
GET /_search { "query": { "dis_max": { "queries": [ { "match": { "subject": "brown fox" }}, { "match": { "message": "brown fox" }} ], "tie_breaker": 0.3 } } }
Normally the best_fields
type uses the score of the single best matching
field, but if tie_breaker
is specified, then it calculates the score as
follows:
- the score from the best matching field
-
plus
tie_breaker * _score
for all other matching fields
Also, accepts analyzer
, boost
, operator
, minimum_should_match
,
fuzziness
, lenient
, prefix_length
, max_expansions
, fuzzy_rewrite
, zero_terms_query
,
cutoff_frequency
, auto_generate_synonyms_phrase_query
and fuzzy_transpositions
,
as explained in match query.
operator
and minimum_should_match
The best_fields
and most_fields
types are field-centric — they generate
a match
query per field. This means that the operator
and
minimum_should_match
parameters are applied to each field individually,
which is probably not what you want.
Take this query for example:
GET /_search { "query": { "multi_match" : { "query": "Will Smith", "type": "best_fields", "fields": [ "first_name", "last_name" ], "operator": "and" } } }
This query is executed as:
(+first_name:will +first_name:smith) | (+last_name:will +last_name:smith)
In other words, all terms must be present in a single field for a document to match.
See cross_fields
for a better solution.
most_fields
editThe most_fields
type is most useful when querying multiple fields that
contain the same text analyzed in different ways. For instance, the main
field may contain synonyms, stemming and terms without diacritics. A second
field may contain the original terms, and a third field might contain
shingles. By combining scores from all three fields we can match as many
documents as possible with the main field, but use the second and third fields
to push the most similar results to the top of the list.
This query:
GET /_search { "query": { "multi_match" : { "query": "quick brown fox", "type": "most_fields", "fields": [ "title", "title.original", "title.shingles" ] } } }
would be executed as:
GET /_search { "query": { "bool": { "should": [ { "match": { "title": "quick brown fox" }}, { "match": { "title.original": "quick brown fox" }}, { "match": { "title.shingles": "quick brown fox" }} ] } } }
The score from each match
clause is added together, then divided by the
number of match
clauses.
Also, accepts analyzer
, boost
, operator
, minimum_should_match
,
fuzziness
, lenient
, prefix_length
, max_expansions
, fuzzy_rewrite
, zero_terms_query
and cutoff_frequency
, as explained in match query, but
see operator
and minimum_should_match
.
phrase
and phrase_prefix
editThe phrase
and phrase_prefix
types behave just like best_fields
,
but they use a match_phrase
or match_phrase_prefix
query instead of a
match
query.
This query:
GET /_search { "query": { "multi_match" : { "query": "quick brown f", "type": "phrase_prefix", "fields": [ "subject", "message" ] } } }
would be executed as:
GET /_search { "query": { "dis_max": { "queries": [ { "match_phrase_prefix": { "subject": "quick brown f" }}, { "match_phrase_prefix": { "message": "quick brown f" }} ] } } }
Also, accepts analyzer
, boost
, lenient
and zero_terms_query
as explained
in Match, as well as slop
which is explained in Match phrase.
Type phrase_prefix
additionally accepts max_expansions
.
cross_fields
editThe cross_fields
type is particularly useful with structured documents where
multiple fields should match. For instance, when querying the first_name
and last_name
fields for “Will Smith”, the best match is likely to have
“Will” in one field and “Smith” in the other.
One way of dealing with these types of queries is simply to index the
first_name
and last_name
fields into a single full_name
field. Of
course, this can only be done at index time.
The cross_field
type tries to solve these problems at query time by taking a
term-centric approach. It first analyzes the query string into individual
terms, then looks for each term in any of the fields, as though they were one
big field.
A query like:
GET /_search { "query": { "multi_match" : { "query": "Will Smith", "type": "cross_fields", "fields": [ "first_name", "last_name" ], "operator": "and" } } }
is executed as:
+(first_name:will last_name:will) +(first_name:smith last_name:smith)
In other words, all terms must be present in at least one field for a
document to match. (Compare this to
the logic used for best_fields
and most_fields
.)
That solves one of the two problems. The problem of differing term frequencies is solved by blending the term frequencies for all fields in order to even out the differences.
In practice, first_name:smith
will be treated as though it has the same
frequencies as last_name:smith
, plus one. This will make matches on
first_name
and last_name
have comparable scores, with a tiny advantage
for last_name
since it is the most likely field that contains smith
.
Note that cross_fields
is usually only useful on short string fields
that all have a boost
of 1
. Otherwise boosts, term freqs and length
normalization contribute to the score in such a way that the blending of term
statistics is not meaningful anymore.
If you run the above query through the Validate, it returns this explanation:
+blended("will", fields: [first_name, last_name]) +blended("smith", fields: [first_name, last_name])
Also, accepts analyzer
, boost
, operator
, minimum_should_match
,
lenient
, zero_terms_query
and cutoff_frequency
, as explained in
match query.
cross_field
and analysis
editThe cross_field
type can only work in term-centric mode on fields that have
the same analyzer. Fields with the same analyzer are grouped together as in
the example above. If there are multiple groups, the query will use the best
score from any group.
For instance, if we have a first
and last
field which have
the same analyzer, plus a first.edge
and last.edge
which
both use an edge_ngram
analyzer, this query:
GET /_search { "query": { "multi_match" : { "query": "Jon", "type": "cross_fields", "fields": [ "first", "first.edge", "last", "last.edge" ] } } }
would be executed as:
blended("jon", fields: [first, last]) | ( blended("j", fields: [first.edge, last.edge]) blended("jo", fields: [first.edge, last.edge]) blended("jon", fields: [first.edge, last.edge]) )
In other words, first
and last
would be grouped together and
treated as a single field, and first.edge
and last.edge
would be
grouped together and treated as a single field.
Having multiple groups is fine, but when combined with operator
or
minimum_should_match
, it can suffer from the same problem
as most_fields
or best_fields
.
You can easily rewrite this query yourself as two separate cross_fields
queries combined with a dis_max
query, and apply the minimum_should_match
parameter to just one of them:
GET /_search { "query": { "dis_max": { "queries": [ { "multi_match" : { "query": "Will Smith", "type": "cross_fields", "fields": [ "first", "last" ], "minimum_should_match": "50%" } }, { "multi_match" : { "query": "Will Smith", "type": "cross_fields", "fields": [ "*.edge" ] } } ] } } }
You can force all fields into the same group by specifying the analyzer
parameter in the query.
GET /_search { "query": { "multi_match" : { "query": "Jon", "type": "cross_fields", "analyzer": "standard", "fields": [ "first", "last", "*.edge" ] } } }
which will be executed as:
blended("will", fields: [first, first.edge, last.edge, last]) blended("smith", fields: [first, first.edge, last.edge, last])
tie_breaker
editBy default, each per-term blended
query will use the best score returned by
any field in a group. Then when combining scores across groups, the query uses
the best score from any group. The tie_breaker
parameter can change the
behavior for both of these steps:
|
Take the single best score out of (eg) |
|
Add together the scores for (eg) |
|
Take the single best score plus |
bool_prefix
editThe bool_prefix
type’s scoring behaves like most_fields
, but using a
match_bool_prefix
query instead of a
match
query.
GET /_search { "query": { "multi_match" : { "query": "quick brown f", "type": "bool_prefix", "fields": [ "subject", "message" ] } } }
The analyzer
, boost
, operator
, minimum_should_match
, lenient
,
zero_terms_query
, and auto_generate_synonyms_phrase_query
parameters as
explained in match query are supported. The
fuzziness
, prefix_length
, max_expansions
, fuzzy_rewrite
, and
fuzzy_transpositions
parameters are supported for the terms that are used to
construct term queries, but do not have an effect on the prefix query
constructed from the final term.
The slop
and cutoff_frequency
parameters are not supported by this query
type.
On this page