Create trained models API
editCreate trained models API
editCreates a trained model.
Models created in version 7.8.0 are not backwards compatible with older node versions. If in a mixed cluster environment, all nodes must be at least 7.8.0 to use a model stored by a 7.8.0 node.
Request
editPUT _ml/trained_models/<model_id>
Prerequisites
editRequires the manage_ml
cluster privilege. This privilege is included in the
machine_learning_admin
built-in role.
Description
editThe create trained model API enables you to supply a trained model that is not created by data frame analytics.
Path parameters
edit-
<model_id>
- (Required, string) The unique identifier of the trained model.
Query parameters
edit-
defer_definition_decompression
-
(Optional, boolean)
If set to
true
and acompressed_definition
is provided, the request defers definition decompression and skips relevant validations. This deferral is useful for systems or users that know a good byte size estimate for their model and know that their model is valid and likely won’t fail during inference.
Request body
edit-
compressed_definition
-
(Required, string)
The compressed (GZipped and Base64 encoded) inference definition of the model.
If
compressed_definition
is specified, thendefinition
cannot be specified.
-
definition
-
(Required, object) The inference definition for the model. If
definition
is specified, thencompressed_definition
cannot be specified.Properties of
definition
-
preprocessors
-
(Optional, object) Collection of preprocessors. See Preprocessor examples.
Properties of
preprocessors
-
frequency_encoding
-
(Required, object) Defines a frequency encoding for a field.
Properties of
frequency_encoding
-
feature_name
- (Required, string) The name of the resulting feature.
-
field
- (Required, string) The field name to encode.
-
frequency_map
- (Required, object map of string:double) Object that maps the field value to the frequency encoded value.
-
custom
-
(Optional, Boolean)
Boolean value indicating if the analytics job created the preprocessor
or if a user provided it. This adjusts the feature importance calculation.
When
true
, the feature importance calculation returns importance for the processed feature. Whenfalse
, the total importance of the original field is returned. Default isfalse
.
-
-
one_hot_encoding
-
(Required, object) Defines a one hot encoding map for a field.
Properties of
one_hot_encoding
-
field
- (Required, string) The field name to encode.
-
hot_map
- (Required, object map of strings) String map of "field_value: one_hot_column_name".
-
custom
-
(Optional, Boolean)
Boolean value indicating if the analytics job created the preprocessor
or if a user provided it. This adjusts the feature importance calculation.
When
true
, the feature importance calculation returns importance for the processed feature. Whenfalse
, the total importance of the original field is returned. Default isfalse
.
-
-
target_mean_encoding
-
(Required, object) Defines a target mean encoding for a field.
Properties of
target_mean_encoding
-
default_value
-
(Required, double)
The feature value if the field value is not in the
target_map
. -
feature_name
- (Required, string) The name of the resulting feature.
-
field
- (Required, string) The field name to encode.
-
target_map
-
(Required, object map of string:double) Object that maps the field value to the target mean value.
-
custom
-
(Optional, Boolean)
Boolean value indicating if the analytics job created the preprocessor
or if a user provided it. This adjusts the feature importance calculation.
When
true
, the feature importance calculation returns importance for the processed feature. Whenfalse
, the total importance of the original field is returned. Default isfalse
.
-
-
-
-
trained_model
-
(Required, object) The definition of the trained model.
Properties of
trained_model
-
tree
-
(Required, object) The definition for a binary decision tree.
Properties of
tree
-
classification_labels
-
(Optional, string) An array of classification labels (used for
classification
). -
feature_names
- (Required, string) Features expected by the tree, in their expected order.
-
target_type
-
(Required, string)
String indicating the model target type;
regression
orclassification
. -
tree_structure
-
(Required, object)
An array of
tree_node
objects. The nodes must be in ordinal order by theirtree_node.node_index
value.
-
-
tree_node
-
(Required, object) The definition of a node in a tree.
There are two major types of nodes: leaf nodes and not-leaf nodes.
-
Leaf nodes only need
node_index
andleaf_value
defined. -
All other nodes need
split_feature
,left_child
,right_child
,threshold
,decision_type
, anddefault_left
defined.
Properties of
tree_node
-
decision_type
-
(Optional, string)
Indicates the positive value (in other words, when to choose the left node)
decision type. Supported
lt
,lte
,gt
,gte
. Defaults tolte
. -
default_left
-
(Optional, Boolean)
Indicates whether to default to the left when the feature is missing. Defaults
to
true
. -
leaf_value
- (Optional, double) The leaf value of the of the node, if the value is a leaf (in other words, no children).
-
left_child
- (Optional, integer) The index of the left child.
-
node_index
- (Integer) The index of the current node.
-
right_child
- (Optional, integer) The index of the right child.
-
split_feature
- (Optional, integer) The index of the feature value in the feature array.
-
split_gain
- (Optional, double) The information gain from the split.
-
threshold
- (Optional, double) The decision threshold with which to compare the feature value.
-
Leaf nodes only need
-
ensemble
-
(Optional, object) The definition for an ensemble model. See Model examples.
Properties of
ensemble
-
aggregate_output
-
(Required, object) An aggregated output object that defines how to aggregate the outputs of the
trained_models
. Supported objects areweighted_mode
,weighted_sum
, andlogistic_regression
. See Aggregated output example.Properties of
aggregate_output
-
logistic_regression
-
(Optional, object) This
aggregated_output
type works with binary classification (classification for values [0, 1]). It multiplies the outputs (in the case of theensemble
model, the inference model values) by the suppliedweights
. The resulting vector is summed and passed to asigmoid
function. The result of thesigmoid
function is considered the probability of class 1 (P_1
), consequently, the probability of class 0 is1 - P_1
. The class with the highest probability (either 0 or 1) is then returned. For more information about logistic regression, see this wiki article.Properties of
logistic_regression
-
weights
- (Required, double) The weights to multiply by the input values (the inference values of the trained models).
-
-
weighted_sum
-
(Optional, object) This
aggregated_output
type works with regression. The weighted sum of the input values.Properties of
weighted_sum
-
weights
- (Required, double) The weights to multiply by the input values (the inference values of the trained models).
-
-
weighted_mode
-
(Optional, object) This
aggregated_output
type works with regression or classification. It takes a weighted vote of the input values. The most common input value (taking the weights into account) is returned.Properties of
weighted_mode
-
weights
- (Required, double) The weights to multiply by the input values (the inference values of the trained models).
-
-
exponent
-
(Optional, object) This
aggregated_output
type works with regression. It takes a weighted sum of the input values and passes the result to an exponent function (e^x
wherex
is the sum of the weighted values).Properties of
exponent
-
weights
- (Required, double) The weights to multiply by the input values (the inference values of the trained models).
-
-
-
classification_labels
- (Optional, string) An array of classification labels.
-
feature_names
- (Optional, string) Features expected by the ensemble, in their expected order.
-
target_type
-
(Required, string)
String indicating the model target type;
regression
orclassification.
-
trained_models
-
(Required, object)
An array of
trained_model
objects. Supported trained models aretree
andensemble
.
-
-
-
-
description
- (Optional, string) A human-readable description of the inference trained model.
-
estimated_heap_memory_usage_bytes
-
(Optional, integer)
[7.16.0]
Deprecated in 7.16.0. Replaced by
model_size_bytes
-
estimated_operations
-
(Optional, integer)
The estimated number of operations to use the trained model during inference.
This property is supported only if
defer_definition_decompression
istrue
or the model definition is not supplied.
-
inference_config
-
(Required, object) The default configuration for inference. This can be either a
regression
orclassification
configuration. It must match the underlyingdefinition.trained_model
'starget_type
.Properties of
inference_config
-
regression
-
(Optional, object) Regression configuration for inference.
Properties of regression inference
-
num_top_feature_importance_values
- (Optional, integer) Specifies the maximum number of feature importance values per document. By default, it is zero and no feature importance calculation occurs.
-
results_field
-
(Optional, string)
The field that is added to incoming documents to contain the inference
prediction. Defaults to
predicted_value
.
-
-
classification
-
(Optional, object) Classification configuration for inference.
Properties of classification inference
-
num_top_classes
- (Optional, integer) Specifies the number of top class predictions to return. Defaults to 0.
-
num_top_feature_importance_values
- (Optional, integer) Specifies the maximum number of feature importance values per document. By default, it is zero and no feature importance calculation occurs.
-
prediction_field_type
-
(Optional, string)
Specifies the type of the predicted field to write.
Acceptable values are:
string
,number
,boolean
. Whenboolean
is provided1.0
is transformed totrue
and0.0
tofalse
. -
results_field
-
(Optional, string)
The field that is added to incoming documents to contain the inference
prediction. Defaults to
predicted_value
. -
top_classes_results_field
-
(Optional, string)
Specifies the field to which the top classes are written. Defaults to
top_classes
.
-
-
-
input
-
(Required, object) The input field names for the model definition.
Properties of
input
-
field_names
- (Required, string) An array of input field names for the model.
-
-
metadata
- (Optional, object) An object map that contains metadata about the model.
-
model_size_bytes
-
(Optional, integer)
The estimated memory usage in bytes to keep the trained model in memory. This
property is supported only if
defer_definition_decompression
istrue
or the model definition is not supplied. -
tags
- (Optional, string) An array of tags to organize the model.
Examples
editPreprocessor examples
editThe example below shows a frequency_encoding
preprocessor object:
{ "frequency_encoding":{ "field":"FlightDelayType", "feature_name":"FlightDelayType_frequency", "frequency_map":{ "Carrier Delay":0.6007414737092798, "NAS Delay":0.6007414737092798, "Weather Delay":0.024573576178086153, "Security Delay":0.02476631010889467, "No Delay":0.6007414737092798, "Late Aircraft Delay":0.6007414737092798 } } }
The next example shows a one_hot_encoding
preprocessor object:
{ "one_hot_encoding":{ "field":"FlightDelayType", "hot_map":{ "Carrier Delay":"FlightDelayType_Carrier Delay", "NAS Delay":"FlightDelayType_NAS Delay", "No Delay":"FlightDelayType_No Delay", "Late Aircraft Delay":"FlightDelayType_Late Aircraft Delay" } } }
This example shows a target_mean_encoding
preprocessor object:
{ "target_mean_encoding":{ "field":"FlightDelayType", "feature_name":"FlightDelayType_targetmean", "target_map":{ "Carrier Delay":39.97465788139886, "NAS Delay":39.97465788139886, "Security Delay":203.171206225681, "Weather Delay":187.64705882352948, "No Delay":39.97465788139886, "Late Aircraft Delay":39.97465788139886 }, "default_value":158.17995752420433 } }
Model examples
editThe first example shows a trained_model
object:
{ "tree":{ "feature_names":[ "DistanceKilometers", "FlightTimeMin", "FlightDelayType_NAS Delay", "Origin_targetmean", "DestRegion_targetmean", "DestCityName_targetmean", "OriginAirportID_targetmean", "OriginCityName_frequency", "DistanceMiles", "FlightDelayType_Late Aircraft Delay" ], "tree_structure":[ { "decision_type":"lt", "threshold":9069.33437193022, "split_feature":0, "split_gain":4112.094574306927, "node_index":0, "default_left":true, "left_child":1, "right_child":2 }, ... { "node_index":9, "leaf_value":-27.68987349695448 }, ... ], "target_type":"regression" } }
The following example shows an ensemble
model object:
"ensemble":{ "feature_names":[ ... ], "trained_models":[ { "tree":{ "feature_names":[], "tree_structure":[ { "decision_type":"lte", "node_index":0, "leaf_value":47.64069875778043, "default_left":false } ], "target_type":"regression" } }, ... ], "aggregate_output":{ "weighted_sum":{ "weights":[ ... ] } }, "target_type":"regression" }
Aggregated output example
editExample of a logistic_regression
object:
"aggregate_output" : { "logistic_regression" : { "weights" : [2.0, 1.0, .5, -1.0, 5.0, 1.0, 1.0] } }
Example of a weighted_sum
object:
"aggregate_output" : { "weighted_sum" : { "weights" : [1.0, -1.0, .5, 1.0, 5.0] } }
Example of a weighted_mode
object:
"aggregate_output" : { "weighted_mode" : { "weights" : [1.0, 1.0, 1.0, 1.0, 1.0] } }
Example of an exponent
object:
"aggregate_output" : { "exponent" : { "weights" : [1.0, 1.0, 1.0, 1.0, 1.0] } }
Trained models JSON schema
editFor the full JSON schema of trained models, click here.