- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.7
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging configuration
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- SQL access settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Search your data
- Query DSL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Boxplot Aggregation
- Cardinality Aggregation
- Stats Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Median Absolute Deviation Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Top Metrics Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Avg Bucket Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Cumulative Cardinality Aggregation
- Cumulative Sum Aggregation
- Derivative Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Serial Differencing Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Term vectors API
editTerm vectors API
editRetrieves information and statistics for terms in the fields of a particular document.
GET /twitter/_termvectors/1
Request
editGET /<index>/_termvectors/<_id>
Description
editYou can retrieve term vectors for documents stored in the index or for artificial documents passed in the body of the request.
You can specify the fields you are interested in through the fields
parameter,
or by adding the fields to the request body.
GET /twitter/_termvectors/1?fields=message
Fields can be specified using wildcards, similar to the multi match query.
Term vectors are real-time by default, not near real-time.
This can be changed by setting realtime
parameter to false
.
You can request three types of values: term information, term statistics and field statistics. By default, all term information and field statistics are returned for all fields but term statistics are excluded.
Term information
edit- term frequency in the field (always returned)
-
term positions (
positions
: true) -
start and end offsets (
offsets
: true) -
term payloads (
payloads
: true), as base64 encoded bytes
If the requested information wasn’t stored in the index, it will be computed on the fly if possible. Additionally, term vectors could be computed for documents not even existing in the index, but instead provided by the user.
Start and end offsets assume UTF-16 encoding is being used. If you want to use these offsets in order to get the original text that produced this token, you should make sure that the string you are taking a sub-string of is also encoded using UTF-16.
Term statistics
editSetting term_statistics
to true
(default is false
) will
return
-
total term frequency (how often a term occurs in all documents)
- document frequency (the number of documents containing the current term)
By default these values are not returned since term statistics can have a serious performance impact.
Field statistics
editSetting field_statistics
to false
(default is true
) will
omit :
- document count (how many documents contain this field)
- sum of document frequencies (the sum of document frequencies for all terms in this field)
- sum of total term frequencies (the sum of total term frequencies of each term in this field)
Terms filtering
editWith the parameter filter
, the terms returned could also be filtered based
on their tf-idf scores. This could be useful in order find out a good
characteristic vector of a document. This feature works in a similar manner to
the second phase of the
More Like This Query. See example 5
for usage.
The following sub-parameters are supported:
|
Maximum number of terms that must be returned per field. Defaults to |
|
Ignore words with less than this frequency in the source doc. Defaults to |
|
Ignore words with more than this frequency in the source doc. Defaults to unbounded. |
|
Ignore terms which do not occur in at least this many docs. Defaults to |
|
Ignore words which occur in more than this many docs. Defaults to unbounded. |
|
The minimum word length below which words will be ignored. Defaults to |
|
The maximum word length above which words will be ignored. Defaults to unbounded ( |
Behaviour
editThe term and field statistics are not accurate. Deleted documents
are not taken into account. The information is only retrieved for the
shard the requested document resides in.
The term and field statistics are therefore only useful as relative measures
whereas the absolute numbers have no meaning in this context. By default,
when requesting term vectors of artificial documents, a shard to get the statistics
from is randomly selected. Use routing
only to hit a particular shard.
Path parameters
edit-
<index>
- (Required, string) Name of the index that contains the document.
-
<_id>
- (Optional, string) Unique identifier of the document.
Query parameters
edit-
fields
-
(Optional, string) Comma-separated list or wildcard expressions of fields to include in the statistics.
Used as the default list unless a specific field list is provided in the
completion_fields
orfielddata_fields
parameters. -
field_statistics
-
(Optional, boolean) If
true
, the response includes the document count, sum of document frequencies, and sum of total term frequencies. Defaults totrue
. -
<offsets>
-
(Optional, boolean) If
true
, the response includes term offsets. Defaults totrue
. -
payloads
-
(Optional, boolean) If
true
, the response includes term payloads. Defaults totrue
. -
positions
-
(Optional, boolean) If
true
, the response includes term positions. Defaults totrue
. -
preference
- (Optional, string) Specifies the node or shard the operation should be performed on. Random by default.
-
routing
- (Optional, string) Target the specified primary shard.
-
realtime
-
(Optional, boolean) If
true
, the request is real-time as opposed to near-real-time. Defaults totrue
. See Realtime. -
term_statistics
-
(Optional, boolean) If
true
, the response includes term frequency and document frequency. Defaults tofalse
. -
version
-
(Optional, boolean) If
true
, returns the document version as part of a hit. -
version_type
-
(Optional, enum) Specific version type:
internal
,external
,external_gte
.
Examples
editReturning stored term vectors
editFirst, we create an index that stores term vectors, payloads etc. :
PUT /twitter { "mappings": { "properties": { "text": { "type": "text", "term_vector": "with_positions_offsets_payloads", "store" : true, "analyzer" : "fulltext_analyzer" }, "fullname": { "type": "text", "term_vector": "with_positions_offsets_payloads", "analyzer" : "fulltext_analyzer" } } }, "settings" : { "index" : { "number_of_shards" : 1, "number_of_replicas" : 0 }, "analysis": { "analyzer": { "fulltext_analyzer": { "type": "custom", "tokenizer": "whitespace", "filter": [ "lowercase", "type_as_payload" ] } } } } }
Second, we add some documents:
PUT /twitter/_doc/1 { "fullname" : "John Doe", "text" : "twitter test test test " } PUT /twitter/_doc/2?refresh=wait_for { "fullname" : "Jane Doe", "text" : "Another twitter test ..." }
The following request returns all information and statistics for field
text
in document 1
(John Doe):
GET /twitter/_termvectors/1 { "fields" : ["text"], "offsets" : true, "payloads" : true, "positions" : true, "term_statistics" : true, "field_statistics" : true }
Response:
{ "_id": "1", "_index": "twitter", "_type": "_doc", "_version": 1, "found": true, "took": 6, "term_vectors": { "text": { "field_statistics": { "doc_count": 2, "sum_doc_freq": 6, "sum_ttf": 8 }, "terms": { "test": { "doc_freq": 2, "term_freq": 3, "tokens": [ { "end_offset": 12, "payload": "d29yZA==", "position": 1, "start_offset": 8 }, { "end_offset": 17, "payload": "d29yZA==", "position": 2, "start_offset": 13 }, { "end_offset": 22, "payload": "d29yZA==", "position": 3, "start_offset": 18 } ], "ttf": 4 }, "twitter": { "doc_freq": 2, "term_freq": 1, "tokens": [ { "end_offset": 7, "payload": "d29yZA==", "position": 0, "start_offset": 0 } ], "ttf": 2 } } } } }
Generating term vectors on the fly
editTerm vectors which are not explicitly stored in the index are automatically
computed on the fly. The following request returns all information and statistics for the
fields in document 1
, even though the terms haven’t been explicitly stored in the index.
Note that for the field text
, the terms are not re-generated.
GET /twitter/_termvectors/1 { "fields" : ["text", "some_field_without_term_vectors"], "offsets" : true, "positions" : true, "term_statistics" : true, "field_statistics" : true }
Artificial documents
editTerm vectors can also be generated for artificial documents,
that is for documents not present in the index. For example, the following request would
return the same results as in example 1. The mapping used is determined by the index
.
If dynamic mapping is turned on (default), the document fields not in the original mapping will be dynamically created.
GET /twitter/_termvectors { "doc" : { "fullname" : "John Doe", "text" : "twitter test test test" } }
Per-field analyzer
editAdditionally, a different analyzer than the one at the field may be provided
by using the per_field_analyzer
parameter. This is useful in order to
generate term vectors in any fashion, especially when using artificial
documents. When providing an analyzer for a field that already stores term
vectors, the term vectors will be re-generated.
GET /twitter/_termvectors { "doc" : { "fullname" : "John Doe", "text" : "twitter test test test" }, "fields": ["fullname"], "per_field_analyzer" : { "fullname": "keyword" } }
Response:
{ "_index": "twitter", "_type": "_doc", "_version": 0, "found": true, "took": 6, "term_vectors": { "fullname": { "field_statistics": { "sum_doc_freq": 2, "doc_count": 4, "sum_ttf": 4 }, "terms": { "John Doe": { "term_freq": 1, "tokens": [ { "position": 0, "start_offset": 0, "end_offset": 8 } ] } } } } }
Terms filtering
editFinally, the terms returned could be filtered based on their tf-idf scores. In the example below we obtain the three most "interesting" keywords from the artificial document having the given "plot" field value. Notice that the keyword "Tony" or any stop words are not part of the response, as their tf-idf must be too low.
GET /imdb/_termvectors { "doc": { "plot": "When wealthy industrialist Tony Stark is forced to build an armored suit after a life-threatening incident, he ultimately decides to use its technology to fight against evil." }, "term_statistics" : true, "field_statistics" : true, "positions": false, "offsets": false, "filter" : { "max_num_terms" : 3, "min_term_freq" : 1, "min_doc_freq" : 1 } }
Response:
{ "_index": "imdb", "_type": "_doc", "_version": 0, "found": true, "term_vectors": { "plot": { "field_statistics": { "sum_doc_freq": 3384269, "doc_count": 176214, "sum_ttf": 3753460 }, "terms": { "armored": { "doc_freq": 27, "ttf": 27, "term_freq": 1, "score": 9.74725 }, "industrialist": { "doc_freq": 88, "ttf": 88, "term_freq": 1, "score": 8.590818 }, "stark": { "doc_freq": 44, "ttf": 47, "term_freq": 1, "score": 9.272792 } } } } }
On this page