- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.7
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging configuration
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- SQL access settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Search your data
- Query DSL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Boxplot Aggregation
- Cardinality Aggregation
- Stats Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Median Absolute Deviation Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Top Metrics Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Avg Bucket Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Cumulative Cardinality Aggregation
- Cumulative Sum Aggregation
- Derivative Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Serial Differencing Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
What’s new in 7.7
editWhat’s new in 7.7
editHere are the highlights of what’s new and improved in Elasticsearch 7.7! For detailed information about this release, see the Release notes and Breaking changes.
Other versions: 7.6 | 7.5 | 7.4 | 7.3 | 7.2 | 7.1 | 7.0
Fixed index corruption on shrunk indices
editApplying deletes or updates on an index after it had been shrunk would likely
corrupt the index. We advise users of Elasticsearch 6.x who opt in for soft
deletes on some of their indices and all users of Elasticsearch 7.x to upgrade
to 7.7 as soon as possible to no longer be subject to this corruption bug. In
case upgrading in the near future is not an option, we recommend to completely
stop using _shrink
on read-write indices and to do a force-merge right after
shrinking on read-only indices, which significantly reduces the likeliness of
being affected by this bug in case deletes or updates get applied by mistake.
This bug is fixed as of Elasticsearch 7.7.0. Low-level details can be found on the
corresponding issue.
Significant reduction of heap usage of segments
editThis release of Elasticsearch significantly reduces the amount of heap memory that is needed to keep Lucene segments open. In addition to helping with cluster stability, this helps reduce costs by storing much more data per node before hitting memory limits.
Transforms – now in GA!
editIn 7.7, we move transforms from beta to general availability.
Transforms enable you to pivot existing Elasticsearch indices using group-by and aggregations into a destination feature index, which provides opportunities for new insights and analytics. For example, you can use transforms to pivot your data into entity-centric indices that summarize the behavior of users or sessions or other entities in your data.
Transforms now include support for cross-cluster search. Allowing you to create your destination feature index on a separate cluster from the source indices.
Aggregation support has been expanded within transforms to include support for multi-value (percentiles) and filter aggregations. We also optimized the performance of the date histogram aggregations.
Introducing multiclass classification
editClassification using multiple classes is now available in data frame analytics. Classification is a supervised machine learning technique which has been already available as a binary process in the previous release. Multiclass classification works well with up to 30 distinct categories.
Feature importance at inference time
editFeature importance now can be calculated at inference time. This value provides further insight into the results of a classification or regression job and therefore helps interpret these results.
Finer memory control for bucket aggregations
editWhile building buckets, aggregations will now periodically check the
real-memory circuit breaker before continuing to allocate more buckets. This
allows better responsivity to memory pressure and avoids OutOfMemory
situations due to allocating more buckets than the node can handle.
A new way of searching: asynchronously
editYou can now submit long-running searches using
the new _async_search
API. The new API accepts the
same parameters and request body as the Search API.
However, instead of blocking and returning the final response only when it’s
entirely finished, you can retrieve results from an async search as they become
available.
The request takes a parameter, wait_for_completion
, which controls how long
the server will wait until it sends back a response. The first response
contains among others a search unique ID, a response version, an indication if
this response is partial or not, plus the usual metadata (shards involved,
number of hits etc) and potentially results. If the response is not complete
and final, the client can continue polling for results, issuing a new request
using the provided search ID. If new results are available, the returned
version is incremented and the new batch of results are returned. This can
continue until all the results are fetched.
Unless deleted earlier by the user, the asynchronous searches are kept alive
for a given interval. This defaults to 5 days and can be controlled by another
request parameter, keep_alive
.
Password protection for the keystore
editElasticsearch uses a custom on-disk keystore for secure settings such as passwords and SSL certificates. Up until now, this prevented users with command-line access from viewing secure files by listing commands, but nothing prevented such users from changing values in the keystore, or removing values from it. Furthermore, the values were only obfuscated by a hash; no user-specific secret protected the secure settings.
This new feature changes all of that by adding password-protection to the keystore. This is not be a breaking change: if a keystore has no password, there won’t be any new prompts. A user must choose to password-protect their keystore in order to benefit from the new behavior.
A new aggregation: top_metrics
editThe new top_metrics
aggregation "selects" a metric from a document according
to a criteria on a given, different field. That criteria is currently the
largest or smallest "sort" value. It is fairly similar to top_hits
in spirit,
but because it is more limited, top_metrics
uses less memory and
is often faster.
Query speed-up for sorted queries on time-based indices
editWe’ve optimized sorted, top-documents-only queries run on time-based indices. The optimization stems from the fact that the ranges of (document) timestamps in the shards don’t overlap. It is implemented by rewriting the shard search requests based on the partial results already available from other shards, if it can be determined that the query will not yield any result from the current shard; i.e. we know in advance that the bottom entry of the (sorted) result set after a partial merge is better than the values contained in this current shard.
A new aggregation: boxplot
editThe interquartile range (IQR) is a common robust measure of statistical dispersion. Compared to the standard deviation, the IQR is less sensitive to outliers in the data, with a breakdown point of 0.25. Along with the median, it is often used in creating a box plot, a simple yet common way to summarize data and identify potential outliers.
The new boxplot
aggregation calculates the min, max, and medium as well as the first and third
quartiles of a given data set.
AArch64 support
editElasticsearch now provides AArch64 packaging, including bundling an AArch64 JDK distribution. There are some restrictions in place, namely no machine learning support and depending on underlying page sizes, class data sharing is disabled.
On this page
- Fixed index corruption on shrunk indices
- Significant reduction of heap usage of segments
- Transforms – now in GA!
- Introducing multiclass classification
- Feature importance at inference time
- Finer memory control for bucket aggregations
- A new way of searching: asynchronously
- Password protection for the keystore
- A new aggregation:
top_metrics
- Query speed-up for sorted queries on time-based indices
- A new aggregation:
boxplot
- AArch64 support