- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.14
- Quickstart
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Health Diagnostic settings
- Index lifecycle management settings
- Data stream lifecycle settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Nodes
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard allocation, relocation, and recovery
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Dynamic mapping
- Explicit mapping
- Runtime fields
- Field data types
- Aggregate metric
- Alias
- Arrays
- Binary
- Boolean
- Completion
- Date
- Date nanoseconds
- Dense vector
- Flattened
- Geopoint
- Geoshape
- Histogram
- IP
- Join
- Keyword
- Nested
- Numeric
- Object
- Percolator
- Point
- Range
- Rank feature
- Rank features
- Search-as-you-type
- Semantic text
- Shape
- Sparse vector
- Text
- Token count
- Unsigned long
- Version
- Metadata fields
- Mapping parameters
- Mapping limit settings
- Removal of mapping types
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Ingest pipelines in Search
- Aliases
- Search your data
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- EQL
- ES|QL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Troubleshooting broken repositories
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- Troubleshooting an unbalanced cluster
- Capture diagnostics
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Connector APIs
- Create connector
- Delete connector
- Get connector
- List connectors
- Update connector API key id
- Update connector configuration
- Update connector index name
- Update connector filtering
- Update connector name and description
- Update connector pipeline
- Update connector scheduling
- Update connector service type
- Create connector sync job
- Cancel connector sync job
- Delete connector sync job
- Get connector sync job
- List connector sync jobs
- Check in a connector
- Update connector error
- Update connector last sync stats
- Update connector status
- Check in connector sync job
- Set connector sync job error
- Set connector sync job stats
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- ES|QL APIs
- Features APIs
- Fleet APIs
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Resolve cluster
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Inference APIs
- Info API
- Ingest APIs
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Root API
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get Security settings
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Query User
- Update API key
- Update Security settings
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Text structure APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 8.14.3
- Elasticsearch version 8.14.2
- Elasticsearch version 8.14.1
- Elasticsearch version 8.14.0
- Elasticsearch version 8.13.4
- Elasticsearch version 8.13.3
- Elasticsearch version 8.13.2
- Elasticsearch version 8.13.1
- Elasticsearch version 8.13.0
- Elasticsearch version 8.12.2
- Elasticsearch version 8.12.1
- Elasticsearch version 8.12.0
- Elasticsearch version 8.11.4
- Elasticsearch version 8.11.3
- Elasticsearch version 8.11.2
- Elasticsearch version 8.11.1
- Elasticsearch version 8.11.0
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Categorize text aggregation
editCategorize text aggregation
editA multi-bucket aggregation that groups semi-structured text into buckets. Each text
field is re-analyzed
using a custom analyzer. The resulting tokens are then categorized creating buckets of similarly formatted
text values. This aggregation works best with machine generated text like system logs. Only the first 100 analyzed
tokens are used to categorize the text.
If you have considerable memory allocated to your JVM but are receiving circuit breaker exceptions from this
aggregation, you may be attempting to categorize text that is poorly formatted for categorization. Consider
adding categorization_filters
or running under sampler,
diversified sampler, or
random sampler to explore the created categories.
The algorithm used for categorization was completely changed in version 8.3.0. As a result this aggregation will not work in a mixed version cluster where some nodes are on version 8.3.0 or higher and others are on a version older than 8.3.0. Upgrade all nodes in your cluster to the same version if you experience an error related to this change.
Parameters
edit-
categorization_analyzer
-
(Optional, object or string) The categorization analyzer specifies how the text is analyzed and tokenized before being categorized. The syntax is very similar to that used to define the
analyzer
in the Analyze endpoint. This property cannot be used at the same time ascategorization_filters
.The
categorization_analyzer
field can be specified either as a string or as an object. If it is a string it must refer to a built-in analyzer or one added by another plugin. If it is an object it has the following properties:Properties of
categorization_analyzer
-
char_filter
-
(array of strings or objects)
One or more character filters. In addition to the
built-in character filters, other plugins can provide more character filters.
This property is optional. If it is not specified, no character filters are
applied prior to categorization. If you are customizing some other aspect of the
analyzer and you need to achieve the equivalent of
categorization_filters
(which are not permitted when some other aspect of the analyzer is customized), add them here as pattern replace character filters. -
tokenizer
-
(string or object)
The name or definition of the tokenizer to use after
character filters are applied. This property is compulsory if
categorization_analyzer
is specified as an object. Machine learning provides a tokenizer calledml_standard
that tokenizes in a way that has been determined to produce good categorization results on a variety of log file formats for logs in English. If you want to use that tokenizer but change the character or token filters, specify"tokenizer": "ml_standard"
in yourcategorization_analyzer
. Additionally, theml_classic
tokenizer is available, which tokenizes in the same way as the non-customizable tokenizer in old versions of the product (before 6.2).ml_classic
was the default categorization tokenizer in versions 6.2 to 7.13, so if you need categorization identical to the default for jobs created in these versions, specify"tokenizer": "ml_classic"
in yourcategorization_analyzer
.
From Elasticsearch 8.10.0, a new version number is used to track the configuration and state changes in the machine learning plugin. This new version number is decoupled from the product version and will increment independently.
-
filter
- (array of strings or objects) One or more token filters. In addition to the built-in token filters, other plugins can provide more token filters. This property is optional. If it is not specified, no token filters are applied prior to categorization.
-
-
categorization_filters
-
(Optional, array of strings)
This property expects an array of regular expressions. The expressions
are used to filter out matching sequences from the categorization field values.
You can use this functionality to fine tune the categorization by excluding
sequences from consideration when categories are defined. For example, you can
exclude SQL statements that appear in your log files. This
property cannot be used at the same time as
categorization_analyzer
. If you only want to define simple regular expression filters that are applied prior to tokenization, setting this property is the easiest method. If you also want to customize the tokenizer or post-tokenization filtering, use thecategorization_analyzer
property instead and include the filters aspattern_replace
character filters. -
field
- (Required, string) The semi-structured text field to categorize.
-
max_matched_tokens
- (Optional, integer) This parameter does nothing now, but is permitted for compatibility with the original pre-8.3.0 implementation.
-
max_unique_tokens
- (Optional, integer) This parameter does nothing now, but is permitted for compatibility with the original pre-8.3.0 implementation.
-
min_doc_count
- (Optional, integer) The minimum number of documents for a bucket to be returned to the results.
-
shard_min_doc_count
- (Optional, integer) The minimum number of documents for a bucket to be returned from the shard before merging.
-
shard_size
- (Optional, integer) The number of categorization buckets to return from each shard before merging all the results.
-
similarity_threshold
-
(Optional, integer, default:
70
) The minimum percentage of token weight that must match for text to be added to the category bucket. Must be between 1 and 100. The larger the value the narrower the categories. Larger values will increase memory usage and create narrower categories. -
size
-
(Optional, integer, default:
10
) The number of buckets to return.
Response body
edit-
key
-
(string)
Consists of the tokens (extracted by the
categorization_analyzer
) that are common to all values of the input field included in the category. -
doc_count
- (integer) Number of documents matching the category.
-
max_matching_length
-
(integer)
Categories from short messages containing few tokens may also match
categories containing many tokens derived from much longer messages.
max_matching_length
is an indication of the maximum length of messages that should be considered to belong to the category. When searching for messages that match the category, any messages longer thanmax_matching_length
should be excluded. Use this field to prevent a search for members of a category of short messages from matching much longer ones. -
regex
-
(string)
A regular expression that will match all values of the input field included
in the category. It is possible that the
regex
does not incorporate every term inkey
, if ordering varies between the values included in the category. However, in simple cases theregex
will be the ordered terms concatenated into a regular expression that allows for arbitrary sections in between them. It is not recommended to use theregex
as the primary mechanism for searching for the original documents that were categorized. Search using a regular expression is very slow. Instead the terms in thekey
field should be used to search for matching documents, as a terms search can use the inverted index and hence be much faster. However, there may be situations where it is useful to use theregex
field to test whether a small set of messages that have not been indexed match the category, or to confirm that the terms in thekey
occur in the correct order in all the matched documents.
Basic use
editRe-analyzing large result sets will require a lot of time and memory. This aggregation should be used in conjunction with Async search. Additionally, you may consider using the aggregation as a child of either the sampler or diversified sampler aggregation. This will typically improve speed and memory use.
Example:
POST log-messages/_search?filter_path=aggregations { "aggs": { "categories": { "categorize_text": { "field": "message" } } } }
Response:
{ "aggregations" : { "categories" : { "buckets" : [ { "doc_count" : 3, "key" : "Node shutting down", "regex" : ".*?Node.+?shutting.+?down.*?", "max_matching_length" : 49 }, { "doc_count" : 1, "key" : "Node starting up", "regex" : ".*?Node.+?starting.+?up.*?", "max_matching_length" : 47 }, { "doc_count" : 1, "key" : "User foo_325 logging on", "regex" : ".*?User.+?foo_325.+?logging.+?on.*?", "max_matching_length" : 52 }, { "doc_count" : 1, "key" : "User foo_864 logged off", "regex" : ".*?User.+?foo_864.+?logged.+?off.*?", "max_matching_length" : 52 } ] } } }
Here is an example using categorization_filters
POST log-messages/_search?filter_path=aggregations { "aggs": { "categories": { "categorize_text": { "field": "message", "categorization_filters": ["\\w+\\_\\d{3}"] } } } }
Note how the foo_<number>
tokens are not part of the
category results
{ "aggregations" : { "categories" : { "buckets" : [ { "doc_count" : 3, "key" : "Node shutting down", "regex" : ".*?Node.+?shutting.+?down.*?", "max_matching_length" : 49 }, { "doc_count" : 1, "key" : "Node starting up", "regex" : ".*?Node.+?starting.+?up.*?", "max_matching_length" : 47 }, { "doc_count" : 1, "key" : "User logged off", "regex" : ".*?User.+?logged.+?off.*?", "max_matching_length" : 52 }, { "doc_count" : 1, "key" : "User logging on", "regex" : ".*?User.+?logging.+?on.*?", "max_matching_length" : 52 } ] } } }
Here is an example using categorization_filters
.
The default analyzer uses the ml_standard
tokenizer which is similar to a whitespace tokenizer
but filters out tokens that could be interpreted as hexadecimal numbers. The default analyzer
also uses the first_line_with_letters
character filter, so that only the first meaningful line
of multi-line messages is considered.
But, it may be that a token is a known highly-variable token (formatted usernames, emails, etc.). In that case, it is good to supply
custom categorization_filters
to filter out those tokens for better categories. These filters may also reduce memory usage as fewer
tokens are held in memory for the categories. (If there are sufficient examples of different usernames, emails, etc., then
categories will form that naturally discard them as variables, but for small input data where only one example exists this won’t
happen.)
POST log-messages/_search?filter_path=aggregations { "aggs": { "categories": { "categorize_text": { "field": "message", "categorization_filters": ["\\w+\\_\\d{3}"], "similarity_threshold": 11 } } } }
The filters to apply to the analyzed tokens. It filters
out tokens like |
|
Require 11% of token weight to match before adding a message to an existing category rather than creating a new one. |
The resulting categories are now very broad, merging the log groups.
(A similarity_threshold
of 11% is generally too low. Settings over
50% are usually better.)
{ "aggregations" : { "categories" : { "buckets" : [ { "doc_count" : 4, "key" : "Node", "regex" : ".*?Node.*?", "max_matching_length" : 49 }, { "doc_count" : 2, "key" : "User", "regex" : ".*?User.*?", "max_matching_length" : 52 } ] } } }
This aggregation can have both sub-aggregations and itself be a sub-aggregation. This allows gathering the top daily categories and the top sample doc as below.
POST log-messages/_search?filter_path=aggregations { "aggs": { "daily": { "date_histogram": { "field": "time", "fixed_interval": "1d" }, "aggs": { "categories": { "categorize_text": { "field": "message", "categorization_filters": ["\\w+\\_\\d{3}"] }, "aggs": { "hit": { "top_hits": { "size": 1, "sort": ["time"], "_source": "message" } } } } } } } }
{ "aggregations" : { "daily" : { "buckets" : [ { "key_as_string" : "2016-02-07T00:00:00.000Z", "key" : 1454803200000, "doc_count" : 3, "categories" : { "buckets" : [ { "doc_count" : 2, "key" : "Node shutting down", "regex" : ".*?Node.+?shutting.+?down.*?", "max_matching_length" : 49, "hit" : { "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : null, "hits" : [ { "_index" : "log-messages", "_id" : "1", "_score" : null, "_source" : { "message" : "2016-02-07T00:00:00+0000 Node 3 shutting down" }, "sort" : [ 1454803260000 ] } ] } } }, { "doc_count" : 1, "key" : "Node starting up", "regex" : ".*?Node.+?starting.+?up.*?", "max_matching_length" : 47, "hit" : { "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : null, "hits" : [ { "_index" : "log-messages", "_id" : "2", "_score" : null, "_source" : { "message" : "2016-02-07T00:00:00+0000 Node 5 starting up" }, "sort" : [ 1454803320000 ] } ] } } } ] } }, { "key_as_string" : "2016-02-08T00:00:00.000Z", "key" : 1454889600000, "doc_count" : 3, "categories" : { "buckets" : [ { "doc_count" : 1, "key" : "Node shutting down", "regex" : ".*?Node.+?shutting.+?down.*?", "max_matching_length" : 49, "hit" : { "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : null, "hits" : [ { "_index" : "log-messages", "_id" : "4", "_score" : null, "_source" : { "message" : "2016-02-08T00:00:00+0000 Node 5 shutting down" }, "sort" : [ 1454889660000 ] } ] } } }, { "doc_count" : 1, "key" : "User logged off", "regex" : ".*?User.+?logged.+?off.*?", "max_matching_length" : 52, "hit" : { "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : null, "hits" : [ { "_index" : "log-messages", "_id" : "6", "_score" : null, "_source" : { "message" : "2016-02-08T00:00:00+0000 User foo_864 logged off" }, "sort" : [ 1454889840000 ] } ] } } }, { "doc_count" : 1, "key" : "User logging on", "regex" : ".*?User.+?logging.+?on.*?", "max_matching_length" : 52, "hit" : { "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : null, "hits" : [ { "_index" : "log-messages", "_id" : "5", "_score" : null, "_source" : { "message" : "2016-02-08T00:00:00+0000 User foo_325 logging on" }, "sort" : [ 1454889720000 ] } ] } } } ] } } ] } } }
On this page