- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.14
- Quickstart
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Health Diagnostic settings
- Index lifecycle management settings
- Data stream lifecycle settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Nodes
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard allocation, relocation, and recovery
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Dynamic mapping
- Explicit mapping
- Runtime fields
- Field data types
- Aggregate metric
- Alias
- Arrays
- Binary
- Boolean
- Completion
- Date
- Date nanoseconds
- Dense vector
- Flattened
- Geopoint
- Geoshape
- Histogram
- IP
- Join
- Keyword
- Nested
- Numeric
- Object
- Percolator
- Point
- Range
- Rank feature
- Rank features
- Search-as-you-type
- Semantic text
- Shape
- Sparse vector
- Text
- Token count
- Unsigned long
- Version
- Metadata fields
- Mapping parameters
- Mapping limit settings
- Removal of mapping types
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Ingest pipelines in Search
- Aliases
- Search your data
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- EQL
- ES|QL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Troubleshooting broken repositories
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- Troubleshooting an unbalanced cluster
- Capture diagnostics
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Connector APIs
- Create connector
- Delete connector
- Get connector
- List connectors
- Update connector API key id
- Update connector configuration
- Update connector index name
- Update connector filtering
- Update connector name and description
- Update connector pipeline
- Update connector scheduling
- Update connector service type
- Create connector sync job
- Cancel connector sync job
- Delete connector sync job
- Get connector sync job
- List connector sync jobs
- Check in a connector
- Update connector error
- Update connector last sync stats
- Update connector status
- Check in connector sync job
- Set connector sync job error
- Set connector sync job stats
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- ES|QL APIs
- Features APIs
- Fleet APIs
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Resolve cluster
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Inference APIs
- Info API
- Ingest APIs
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Root API
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get Security settings
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Query User
- Update API key
- Update Security settings
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Text structure APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 8.14.3
- Elasticsearch version 8.14.2
- Elasticsearch version 8.14.1
- Elasticsearch version 8.14.0
- Elasticsearch version 8.13.4
- Elasticsearch version 8.13.3
- Elasticsearch version 8.13.2
- Elasticsearch version 8.13.1
- Elasticsearch version 8.13.0
- Elasticsearch version 8.12.2
- Elasticsearch version 8.12.1
- Elasticsearch version 8.12.0
- Elasticsearch version 8.11.4
- Elasticsearch version 8.11.3
- Elasticsearch version 8.11.2
- Elasticsearch version 8.11.1
- Elasticsearch version 8.11.0
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Composite aggregation
editComposite aggregation
editThe composite aggregation is expensive. Load test your application before deploying a composite aggregation in production.
A multi-bucket aggregation that creates composite buckets from different sources.
Unlike the other multi-bucket
aggregations, you can use the composite
aggregation to paginate all buckets from a multi-level aggregation
efficiently. This aggregation provides a way to stream all buckets of a
specific aggregation, similar to what
scroll does for documents.
The composite buckets are built from the combinations of the values extracted/created for each document and each combination is considered as a composite bucket.
For example, consider the following document:
{ "keyword": ["foo", "bar"], "number": [23, 65, 76] }
Using keyword
and number
as source fields for the aggregation results in
the following composite buckets:
{ "keyword": "foo", "number": 23 } { "keyword": "foo", "number": 65 } { "keyword": "foo", "number": 76 } { "keyword": "bar", "number": 23 } { "keyword": "bar", "number": 65 } { "keyword": "bar", "number": 76 }
Value sources
editThe sources
parameter defines the source fields to use when building
composite buckets. The order that the sources
are defined controls the order
that the keys are returned.
You must use a unique name when defining sources
.
The sources
parameter can be any of the following types:
Terms
editThe terms
value source is similar to a simple terms
aggregation.
The values are extracted from a field exactly like the terms
aggregation.
Example:
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { product: { terms: { field: 'product' } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "product": { "terms": { "field": "product" } } } ] } } } }
Like the terms
aggregation, it’s possible to use a
runtime field to create values for the composite buckets:
response = client.search( body: { runtime_mappings: { day_of_week: { type: 'keyword', script: "\n emit(doc['timestamp'].value.dayOfWeekEnum\n .getDisplayName(TextStyle.FULL, Locale.ROOT))\n " } }, size: 0, aggregations: { my_buckets: { composite: { sources: [ { dow: { terms: { field: 'day_of_week' } } } ] } } } } ) puts response
GET /_search { "runtime_mappings": { "day_of_week": { "type": "keyword", "script": """ emit(doc['timestamp'].value.dayOfWeekEnum .getDisplayName(TextStyle.FULL, Locale.ROOT)) """ } }, "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "dow": { "terms": { "field": "day_of_week" } } } ] } } } }
Although similar, the terms
value source doesn’t support the same set of
parameters as the terms
aggregation. For other supported value source
parameters, see:
Histogram
editThe histogram
value source can be applied on numeric values to build fixed size
interval over the values. The interval
parameter defines how the numeric values should be
transformed. For instance an interval
set to 5 will translate any numeric values to its closest interval,
a value of 101
would be translated to 100
which is the key for the interval between 100 and 105.
Example:
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { histo: { histogram: { field: 'price', interval: 5 } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "histo": { "histogram": { "field": "price", "interval": 5 } } } ] } } } }
Like the histogram
aggregation it’s possible to use a
runtime field to create values for the composite buckets:
response = client.search( body: { runtime_mappings: { 'price.discounted' => { type: 'double', script: "\n double price = doc['price'].value;\n if (doc['product'].value == 'mad max') {\n price *= 0.8;\n }\n emit(price);\n " } }, size: 0, aggregations: { my_buckets: { composite: { sources: [ { price: { histogram: { interval: 5, field: 'price.discounted' } } } ] } } } } ) puts response
GET /_search { "runtime_mappings": { "price.discounted": { "type": "double", "script": """ double price = doc['price'].value; if (doc['product'].value == 'mad max') { price *= 0.8; } emit(price); """ } }, "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "price": { "histogram": { "interval": 5, "field": "price.discounted" } } } ] } } } }
Date histogram
editThe date_histogram
is similar to the histogram
value source except that the interval
is specified by date/time expression:
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { date: { date_histogram: { field: 'timestamp', calendar_interval: '1d' } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d" } } } ] } } } }
The example above creates an interval per day and translates all timestamp
values to the start of its closest intervals.
Available expressions for interval: year
, quarter
, month
, week
, day
, hour
, minute
, second
Time values can also be specified via abbreviations supported by time units parsing.
Note that fractional time values are not supported, but you can address this by shifting to another
time unit (e.g., 1.5h
could instead be specified as 90m
).
Format
Internally, a date is represented as a 64 bit number representing a timestamp in milliseconds-since-the-epoch. These timestamps are returned as the bucket keys. It is possible to return a formatted date string instead using the format specified with the format parameter:
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { date: { date_histogram: { field: 'timestamp', calendar_interval: '1d', format: 'yyyy-MM-dd' } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "format": "yyyy-MM-dd" } } } ] } } } }
Supports expressive date format pattern |
Time Zone
Date-times are stored in Elasticsearch in UTC. By default, all bucketing and
rounding is also done in UTC. The time_zone
parameter can be used to indicate
that bucketing should use a different time zone.
Time zones may either be specified as an ISO 8601 UTC offset (e.g. +01:00
or
-08:00
) or as a timezone id, an identifier used in the TZ database like
America/Los_Angeles
.
Offset
Use the offset
parameter to change the start value of each bucket by the
specified positive (+
) or negative offset (-
) duration, such as 1h
for
an hour, or 1d
for a day. See Time units for more possible time
duration options.
For example, when using an interval of day
, each bucket runs from midnight
to midnight. Setting the offset
parameter to +6h
changes each bucket
to run from 6am to 6am:
response = client.index( index: 'my-index-000001', id: 1, refresh: true, body: { date: '2015-10-01T05:30:00Z' } ) puts response response = client.index( index: 'my-index-000001', id: 2, refresh: true, body: { date: '2015-10-01T06:30:00Z' } ) puts response response = client.search( index: 'my-index-000001', size: 0, body: { aggregations: { my_buckets: { composite: { sources: [ { date: { date_histogram: { field: 'date', calendar_interval: 'day', offset: '+6h', format: 'iso8601' } } } ] } } } } ) puts response
PUT my-index-000001/_doc/1?refresh { "date": "2015-10-01T05:30:00Z" } PUT my-index-000001/_doc/2?refresh { "date": "2015-10-01T06:30:00Z" } GET my-index-000001/_search?size=0 { "aggs": { "my_buckets": { "composite" : { "sources" : [ { "date": { "date_histogram" : { "field": "date", "calendar_interval": "day", "offset": "+6h", "format": "iso8601" } } } ] } } } }
Instead of a single bucket starting at midnight, the above request groups the documents into buckets starting at 6am:
{ ... "aggregations": { "my_buckets": { "after_key": { "date": "2015-10-01T06:00:00.000Z" }, "buckets": [ { "key": { "date": "2015-09-30T06:00:00.000Z" }, "doc_count": 1 }, { "key": { "date": "2015-10-01T06:00:00.000Z" }, "doc_count": 1 } ] } } }
The start offset
of each bucket is calculated after time_zone
adjustments have been made.
GeoTile grid
editThe geotile_grid
value source works on geo_point
fields and groups points into buckets that represent
cells in a grid. The resulting grid can be sparse and only contains cells
that have matching data. Each cell corresponds to a
map tile as used by many online map
sites. Each cell is labeled using a "{zoom}/{x}/{y}" format, where zoom is equal
to the user-specified precision.
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { tile: { geotile_grid: { field: 'location', precision: 8 } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "tile": { "geotile_grid": { "field": "location", "precision": 8 } } } ] } } } }
Precision
The highest-precision geotile of length 29 produces cells that cover less than 10cm by 10cm of land. This precision is uniquely suited for composite aggregations as each tile does not have to be generated and loaded in memory.
See Zoom level documentation on how precision (zoom) correlates to size on the ground. Precision for this aggregation can be between 0 and 29, inclusive.
Bounding box filtering
The geotile source can optionally be constrained to a specific geo bounding box, which reduces the range of tiles used. These bounds are useful when only a specific part of a geographical area needs high precision tiling.
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { tile: { geotile_grid: { field: 'location', precision: 22, bounds: { top_left: 'POINT (4.9 52.4)', bottom_right: 'POINT (5.0 52.3)' } } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "tile": { "geotile_grid": { "field": "location", "precision": 22, "bounds": { "top_left": "POINT (4.9 52.4)", "bottom_right": "POINT (5.0 52.3)" } } } } ] } } } }
Mixing different value sources
editThe sources
parameter accepts an array of value sources.
It is possible to mix different value sources to create composite buckets.
For example:
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { date: { date_histogram: { field: 'timestamp', calendar_interval: '1d' } } }, { product: { terms: { field: 'product' } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d" } } }, { "product": { "terms": { "field": "product" } } } ] } } } }
This will create composite buckets from the values created by two value sources, a date_histogram
and a terms
.
Each bucket is composed of two values, one for each value source defined in the aggregation.
Any type of combinations is allowed and the order in the array is preserved
in the composite buckets.
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { shop: { terms: { field: 'shop' } } }, { product: { terms: { field: 'product' } } }, { date: { date_histogram: { field: 'timestamp', calendar_interval: '1d' } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "shop": { "terms": { "field": "shop" } } }, { "product": { "terms": { "field": "product" } } }, { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d" } } } ] } } } }
Order
editBy default the composite buckets are sorted by their natural ordering. Values are sorted
in ascending order of their values. When multiple value sources are requested, the ordering is done per value
source, the first value of the composite bucket is compared to the first value of the other composite bucket and if they are equals the
next values in the composite bucket are used for tie-breaking. This means that the composite bucket
[foo, 100]
is considered smaller than [foobar, 0]
because foo
is considered smaller than foobar
.
It is possible to define the direction of the sort for each value source by setting order
to asc
(default value)
or desc
(descending order) directly in the value source definition.
For example:
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { date: { date_histogram: { field: 'timestamp', calendar_interval: '1d', order: 'desc' } } }, { product: { terms: { field: 'product', order: 'asc' } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "order": "desc" } } }, { "product": { "terms": { "field": "product", "order": "asc" } } } ] } } } }
... will sort the composite bucket in descending order when comparing values from the date_histogram
source
and in ascending order when comparing values from the terms
source.
Missing bucket
editBy default documents without a value for a given source are ignored.
It is possible to include them in the response by setting missing_bucket
to
true
(defaults to false
):
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { product_name: { terms: { field: 'product', missing_bucket: true, missing_order: 'last' } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [{ "product_name": { "terms": { "field": "product", "missing_bucket": true, "missing_order": "last" } } }] } } } }
In the above example, the product_name
source emits an explicit null
bucket
for documents without a product
value. This bucket is placed last.
You can control the position of the null
bucket using the optional
missing_order
parameter. If missing_order
is first
or last
, the null
bucket is placed in the respective first or last position. If missing_order
is
omitted or default
, the source’s order
determines the bucket’s position. If
order
is asc
(ascending), the bucket is in the first position. If order
is
desc
(descending), the bucket is in the last position.
Size
editThe size
parameter can be set to define how many composite buckets should be returned.
Each composite bucket is considered as a single bucket, so setting a size of 10 will return the
first 10 composite buckets created from the value sources.
The response contains the values for each composite bucket in an array containing the values extracted
from each value source. Defaults to 10
.
Pagination
editIf the number of composite buckets is too high (or unknown) to be returned in a single response
it is possible to split the retrieval in multiple requests.
Since the composite buckets are flat by nature, the requested size
is exactly the number of composite buckets
that will be returned in the response (assuming that they are at least size
composite buckets to return).
If all composite buckets should be retrieved it is preferable to use a small size (100
or 1000
for instance)
and then use the after
parameter to retrieve the next results.
For example:
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { size: 2, sources: [ { date: { date_histogram: { field: 'timestamp', calendar_interval: '1d' } } }, { product: { terms: { field: 'product' } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "size": 2, "sources": [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d" } } }, { "product": { "terms": { "field": "product" } } } ] } } } }
... returns:
{ ... "aggregations": { "my_buckets": { "after_key": { "date": 1494288000000, "product": "mad max" }, "buckets": [ { "key": { "date": 1494201600000, "product": "rocky" }, "doc_count": 1 }, { "key": { "date": 1494288000000, "product": "mad max" }, "doc_count": 2 } ] } } }
To get the next set of buckets, resend the same aggregation with the after
parameter set to the after_key
value returned in the response.
For example, this request uses the after_key
value provided in the previous response:
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { size: 2, sources: [ { date: { date_histogram: { field: 'timestamp', calendar_interval: '1d', order: 'desc' } } }, { product: { terms: { field: 'product', order: 'asc' } } } ], after: { date: 1_494_288_000_000, product: 'mad max' } } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "size": 2, "sources": [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "order": "desc" } } }, { "product": { "terms": { "field": "product", "order": "asc" } } } ], "after": { "date": 1494288000000, "product": "mad max" } } } } }
The after_key
is usually the key to the last bucket returned in
the response, but that isn’t guaranteed. Always use the returned after_key
instead
of deriving it from the buckets.
Early termination
editFor optimal performance the index sort should be set on the index so that it matches parts or fully the source order in the composite aggregation. For instance the following index sort:
response = client.indices.create( index: 'my-index-000001', body: { settings: { index: { 'sort.field' => [ 'username', 'timestamp' ], 'sort.order' => [ 'asc', 'desc' ] } }, mappings: { properties: { username: { type: 'keyword', doc_values: true }, timestamp: { type: 'date' } } } } ) puts response
PUT my-index-000001 { "settings": { "index": { "sort.field": [ "username", "timestamp" ], "sort.order": [ "asc", "desc" ] } }, "mappings": { "properties": { "username": { "type": "keyword", "doc_values": true }, "timestamp": { "type": "date" } } } }
This index is sorted by |
|
… in ascending order for the
|
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { user_name: { terms: { field: 'user_name' } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "user_name": { "terms": { "field": "user_name" } } } ] } } } }
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { user_name: { terms: { field: 'user_name' } } }, { date: { date_histogram: { field: 'timestamp', calendar_interval: '1d', order: 'desc' } } } ] } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "user_name": { "terms": { "field": "user_name" } } }, { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "order": "desc" } } } ] } } } }
|
|
|
In order to optimize the early termination it is advised to set track_total_hits
in the request
to false
. The number of total hits that match the request can be retrieved on the first request
and it would be costly to compute this number on every page:
response = client.search( body: { size: 0, track_total_hits: false, aggregations: { my_buckets: { composite: { sources: [ { user_name: { terms: { field: 'user_name' } } }, { date: { date_histogram: { field: 'timestamp', calendar_interval: '1d', order: 'desc' } } } ] } } } } ) puts response
GET /_search { "size": 0, "track_total_hits": false, "aggs": { "my_buckets": { "composite": { "sources": [ { "user_name": { "terms": { "field": "user_name" } } }, { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "order": "desc" } } } ] } } } }
Note that the order of the source is important, in the example below switching the user_name
with the timestamp
would deactivate the sort optimization since this configuration wouldn’t match the index sort specification.
If the order of sources do not matter for your use case you can follow these simple guidelines:
- Put the fields with the highest cardinality first.
- Make sure that the order of the field matches the order of the index sort.
- Put multi-valued fields last since they cannot be used for early termination.
index sort can slowdown indexing, it is very important to test index sorting
with your specific use case and dataset to ensure that it matches your requirement. If it doesn’t note that composite
aggregations will also try to early terminate on non-sorted indices if the query matches all document (match_all
query).
Sub-aggregations
editLike any multi-bucket
aggregations the composite
aggregation can hold sub-aggregations.
These sub-aggregations can be used to compute other buckets or statistics on each composite bucket created by this
parent aggregation.
For instance the following example computes the average value of a field
per composite bucket:
response = client.search( body: { size: 0, aggregations: { my_buckets: { composite: { sources: [ { date: { date_histogram: { field: 'timestamp', calendar_interval: '1d', order: 'desc' } } }, { product: { terms: { field: 'product' } } } ] }, aggregations: { the_avg: { avg: { field: 'price' } } } } } } ) puts response
GET /_search { "size": 0, "aggs": { "my_buckets": { "composite": { "sources": [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "order": "desc" } } }, { "product": { "terms": { "field": "product" } } } ] }, "aggregations": { "the_avg": { "avg": { "field": "price" } } } } } }
... returns:
{ ... "aggregations": { "my_buckets": { "after_key": { "date": 1494201600000, "product": "rocky" }, "buckets": [ { "key": { "date": 1494460800000, "product": "apocalypse now" }, "doc_count": 1, "the_avg": { "value": 10.0 } }, { "key": { "date": 1494374400000, "product": "mad max" }, "doc_count": 1, "the_avg": { "value": 27.0 } }, { "key": { "date": 1494288000000, "product": "mad max" }, "doc_count": 2, "the_avg": { "value": 22.5 } }, { "key": { "date": 1494201600000, "product": "rocky" }, "doc_count": 1, "the_avg": { "value": 10.0 } } ] } } }
Pipeline aggregations
editThe composite agg is not currently compatible with pipeline aggregations, nor does it make sense in most cases. E.g. due to the paging nature of composite aggs, a single logical partition (one day for example) might be spread over multiple pages. Since pipeline aggregations are purely post-processing on the final list of buckets, running something like a derivative on a composite page could lead to inaccurate results as it is only taking into account a "partial" result on that page.
Pipeline aggs that are self contained to a single bucket (such as bucket_selector
) might be supported in the future.
On this page