Geo-grid query
editGeo-grid query
editMatches geo_point
and geo_shape
values that
intersect a grid cell from a GeoGrid aggregation.
The query is designed to match the documents that fall inside a bucket of a geogrid aggregation by providing the key of the bucket. For geohash and geotile grids, the query can be used for geo_point and geo_shape fields. For geo_hex grid, it can only be used for geo_point fields.
Example
editAssume the following the following documents are indexed:
PUT /my_locations { "mappings": { "properties": { "location": { "type": "geo_point" } } } } PUT /my_locations/_doc/1?refresh { "location" : "POINT(4.912350 52.374081)", "city": "Amsterdam", "name": "NEMO Science Museum" } PUT /my_locations/_doc/2?refresh { "location" : "POINT(4.405200 51.222900)", "city": "Antwerp", "name": "Letterenhuis" } PUT /my_locations/_doc/3?refresh { "location" : "POINT(2.336389 48.861111)", "city": "Paris", "name": "Musée du Louvre" }
geohash grid
editUsing a geohash_grid aggregation, it is possible to group documents depending on their geohash value:
response = client.search( index: 'my_locations', body: { size: 0, aggregations: { grouped: { geohash_grid: { field: 'location', precision: 2 } } } } ) puts response
GET /my_locations/_search { "size" : 0, "aggs" : { "grouped" : { "geohash_grid" : { "field" : "location", "precision" : 2 } } } }
{ "took" : 10, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "grouped" : { "buckets" : [ { "key" : "u1", "doc_count" : 2 }, { "key" : "u0", "doc_count" : 1 } ] } } }
We can extract the documents on one of those buckets by executing a geo_grid query using the bucket key with the following syntax:
GET /my_locations/_search { "query": { "geo_grid" :{ "location" : { "geohash" : "u0" } } } }
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_locations", "_id" : "3", "_score" : 1.0, "_source" : { "location" : "POINT(2.336389 48.861111)", "city" : "Paris", "name" : "Musée du Louvre" } } ] } }
geotile grid
editUsing a geotile_grid aggregation, it is possible to group documents depending on their geotile value:
response = client.search( index: 'my_locations', body: { size: 0, aggregations: { grouped: { geotile_grid: { field: 'location', precision: 6 } } } } ) puts response
GET /my_locations/_search { "size" : 0, "aggs" : { "grouped" : { "geotile_grid" : { "field" : "location", "precision" : 6 } } } }
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "grouped" : { "buckets" : [ { "key" : "6/32/21", "doc_count" : 2 }, { "key" : "6/32/22", "doc_count" : 1 } ] } } }
We can extract the documents on one of those buckets by executing a geo_grid query using the bucket key with the following syntax:
GET /my_locations/_search { "query": { "geo_grid" :{ "location" : { "geotile" : "6/32/22" } } } }
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_locations", "_id" : "3", "_score" : 1.0, "_source" : { "location" : "POINT(2.336389 48.861111)", "city" : "Paris", "name" : "Musée du Louvre" } } ] } }
geohex grid
editUsing a geohex_grid aggregation, it is possible to group documents depending on their geohex value:
GET /my_locations/_search { "size" : 0, "aggs" : { "grouped" : { "geohex_grid" : { "field" : "location", "precision" : 1 } } } }
{ "took" : 2, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "grouped" : { "buckets" : [ { "key" : "81197ffffffffff", "doc_count" : 2 }, { "key" : "811fbffffffffff", "doc_count" : 1 } ] } } }
We can extract the documents on one of those buckets by executing a geo_grid query using the bucket key with the following syntax:
GET /my_locations/_search { "query": { "geo_grid" :{ "location" : { "geohex" : "811fbffffffffff" } } } }
{ "took" : 26, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_locations", "_id" : "3", "_score" : 1.0, "_source" : { "location" : "POINT(2.336389 48.861111)", "city" : "Paris", "name" : "Musée du Louvre" } } ] } }