- Elasticsearch Guide: other versions:
- Elasticsearch introduction
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Set up X-Pack
- Configuring X-Pack Java Clients
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- API conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Median Absolute Deviation Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Scripting
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Standard Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- Whitespace Tokenizer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Tokenizer
- Pattern Tokenizer
- Char Group Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Token Filters
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Multiplexer Token Filter
- Conditional Token Filter
- Predicate Token Filter Script
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Parsing synonym files
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Exclude mode settings example
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- MinHash Token Filter
- Remove Duplicates Token Filter
- Character Filters
- Modules
- Index modules
- Ingest node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Bytes Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- Managing the index lifecycle
- Getting started with index lifecycle management
- Policy phases and actions
- Set up index lifecycle management policy
- Using policies to manage index rollover
- Update policy
- Index lifecycle error handling
- Restoring snapshots of managed indices
- Start and stop index lifecycle management
- Using ILM with existing indices
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Monitor a cluster
- Frozen indices
- Set up a cluster for high availability
- Roll up or transform your data
- X-Pack APIs
- Info API
- Cross-cluster replication APIs
- Explore API
- Freeze index
- Index lifecycle management API
- Licensing APIs
- Machine learning APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Find file structure
- Flush jobs
- Forecast jobs
- Get calendars
- Get buckets
- Get overall buckets
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Migration APIs
- Rollup APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect Authenticate API
- OpenID Connect Logout API
- SSL certificate
- Transform APIs
- Unfreeze index
- Watcher APIs
- Definitions
- Secure a cluster
- Overview
- Configuring security
- Encrypting communications in Elasticsearch
- Encrypting communications in an Elasticsearch Docker Container
- Enabling cipher suites for stronger encryption
- Separating node-to-node and client traffic
- Configuring an Active Directory realm
- Configuring a file realm
- Configuring an LDAP realm
- Configuring a native realm
- Configuring a PKI realm
- Configuring a SAML realm
- Configuring a Kerberos realm
- Security files
- FIPS 140-2
- How security works
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Auditing security events
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Testing
- Glossary of terms
- Release highlights
- Breaking changes
- Release notes
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Term Vectors
editTerm Vectors
editReturns information and statistics on terms in the fields of a particular
document. The document could be stored in the index or artificially provided
by the user. Term vectors are realtime by default, not near
realtime. This can be changed by setting realtime
parameter to false
.
GET /twitter/_termvectors/1
Optionally, you can specify the fields for which the information is retrieved either with a parameter in the url
GET /twitter/_termvectors/1?fields=message
or by adding the requested fields in the request body (see example below). Fields can also be specified with wildcards in similar way to the multi match query
Return values
editThree types of values can be requested: term information, term statistics and field statistics. By default, all term information and field statistics are returned for all fields but no term statistics.
Term information
edit- term frequency in the field (always returned)
-
term positions (
positions
: true) -
start and end offsets (
offsets
: true) -
term payloads (
payloads
: true), as base64 encoded bytes
If the requested information wasn’t stored in the index, it will be computed on the fly if possible. Additionally, term vectors could be computed for documents not even existing in the index, but instead provided by the user.
Start and end offsets assume UTF-16 encoding is being used. If you want to use these offsets in order to get the original text that produced this token, you should make sure that the string you are taking a sub-string of is also encoded using UTF-16.
Term statistics
editSetting term_statistics
to true
(default is false
) will
return
-
total term frequency (how often a term occurs in all documents)
- document frequency (the number of documents containing the current term)
By default these values are not returned since term statistics can have a serious performance impact.
Field statistics
editSetting field_statistics
to false
(default is true
) will
omit :
- document count (how many documents contain this field)
- sum of document frequencies (the sum of document frequencies for all terms in this field)
- sum of total term frequencies (the sum of total term frequencies of each term in this field)
Terms Filtering
editWith the parameter filter
, the terms returned could also be filtered based
on their tf-idf scores. This could be useful in order find out a good
characteristic vector of a document. This feature works in a similar manner to
the second phase of the
More Like This Query. See example 5
for usage.
The following sub-parameters are supported:
|
Maximum number of terms that must be returned per field. Defaults to |
|
Ignore words with less than this frequency in the source doc. Defaults to |
|
Ignore words with more than this frequency in the source doc. Defaults to unbounded. |
|
Ignore terms which do not occur in at least this many docs. Defaults to |
|
Ignore words which occur in more than this many docs. Defaults to unbounded. |
|
The minimum word length below which words will be ignored. Defaults to |
|
The maximum word length above which words will be ignored. Defaults to unbounded ( |
Behaviour
editThe term and field statistics are not accurate. Deleted documents
are not taken into account. The information is only retrieved for the
shard the requested document resides in.
The term and field statistics are therefore only useful as relative measures
whereas the absolute numbers have no meaning in this context. By default,
when requesting term vectors of artificial documents, a shard to get the statistics
from is randomly selected. Use routing
only to hit a particular shard.
Example: Returning stored term vectors
editFirst, we create an index that stores term vectors, payloads etc. :
PUT /twitter { "mappings": { "properties": { "text": { "type": "text", "term_vector": "with_positions_offsets_payloads", "store" : true, "analyzer" : "fulltext_analyzer" }, "fullname": { "type": "text", "term_vector": "with_positions_offsets_payloads", "analyzer" : "fulltext_analyzer" } } }, "settings" : { "index" : { "number_of_shards" : 1, "number_of_replicas" : 0 }, "analysis": { "analyzer": { "fulltext_analyzer": { "type": "custom", "tokenizer": "whitespace", "filter": [ "lowercase", "type_as_payload" ] } } } } }
Second, we add some documents:
PUT /twitter/_doc/1 { "fullname" : "John Doe", "text" : "twitter test test test " } PUT /twitter/_doc/2 { "fullname" : "Jane Doe", "text" : "Another twitter test ..." }
The following request returns all information and statistics for field
text
in document 1
(John Doe):
GET /twitter/_termvectors/1 { "fields" : ["text"], "offsets" : true, "payloads" : true, "positions" : true, "term_statistics" : true, "field_statistics" : true }
Response:
{ "_id": "1", "_index": "twitter", "_type": "_doc", "_version": 1, "found": true, "took": 6, "term_vectors": { "text": { "field_statistics": { "doc_count": 2, "sum_doc_freq": 6, "sum_ttf": 8 }, "terms": { "test": { "doc_freq": 2, "term_freq": 3, "tokens": [ { "end_offset": 12, "payload": "d29yZA==", "position": 1, "start_offset": 8 }, { "end_offset": 17, "payload": "d29yZA==", "position": 2, "start_offset": 13 }, { "end_offset": 22, "payload": "d29yZA==", "position": 3, "start_offset": 18 } ], "ttf": 4 }, "twitter": { "doc_freq": 2, "term_freq": 1, "tokens": [ { "end_offset": 7, "payload": "d29yZA==", "position": 0, "start_offset": 0 } ], "ttf": 2 } } } } }
Example: Generating term vectors on the fly
editTerm vectors which are not explicitly stored in the index are automatically
computed on the fly. The following request returns all information and statistics for the
fields in document 1
, even though the terms haven’t been explicitly stored in the index.
Note that for the field text
, the terms are not re-generated.
GET /twitter/_termvectors/1 { "fields" : ["text", "some_field_without_term_vectors"], "offsets" : true, "positions" : true, "term_statistics" : true, "field_statistics" : true }
Example: Artificial documents
editTerm vectors can also be generated for artificial documents,
that is for documents not present in the index. For example, the following request would
return the same results as in example 1. The mapping used is determined by the index
.
If dynamic mapping is turned on (default), the document fields not in the original mapping will be dynamically created.
GET /twitter/_termvectors { "doc" : { "fullname" : "John Doe", "text" : "twitter test test test" } }
Per-field analyzer
editAdditionally, a different analyzer than the one at the field may be provided
by using the per_field_analyzer
parameter. This is useful in order to
generate term vectors in any fashion, especially when using artificial
documents. When providing an analyzer for a field that already stores term
vectors, the term vectors will be re-generated.
GET /twitter/_termvectors { "doc" : { "fullname" : "John Doe", "text" : "twitter test test test" }, "fields": ["fullname"], "per_field_analyzer" : { "fullname": "keyword" } }
Response:
{ "_index": "twitter", "_type": "_doc", "_version": 0, "found": true, "took": 6, "term_vectors": { "fullname": { "field_statistics": { "sum_doc_freq": 2, "doc_count": 4, "sum_ttf": 4 }, "terms": { "John Doe": { "term_freq": 1, "tokens": [ { "position": 0, "start_offset": 0, "end_offset": 8 } ] } } } } }
Example: Terms filtering
editFinally, the terms returned could be filtered based on their tf-idf scores. In the example below we obtain the three most "interesting" keywords from the artificial document having the given "plot" field value. Notice that the keyword "Tony" or any stop words are not part of the response, as their tf-idf must be too low.
GET /imdb/_termvectors { "doc": { "plot": "When wealthy industrialist Tony Stark is forced to build an armored suit after a life-threatening incident, he ultimately decides to use its technology to fight against evil." }, "term_statistics" : true, "field_statistics" : true, "positions": false, "offsets": false, "filter" : { "max_num_terms" : 3, "min_term_freq" : 1, "min_doc_freq" : 1 } }
Response:
{ "_index": "imdb", "_type": "_doc", "_version": 0, "found": true, "term_vectors": { "plot": { "field_statistics": { "sum_doc_freq": 3384269, "doc_count": 176214, "sum_ttf": 3753460 }, "terms": { "armored": { "doc_freq": 27, "ttf": 27, "term_freq": 1, "score": 9.74725 }, "industrialist": { "doc_freq": 88, "ttf": 88, "term_freq": 1, "score": 8.590818 }, "stark": { "doc_freq": 44, "ttf": 47, "term_freq": 1, "score": 9.272792 } } } } }
On this page