- Elasticsearch Guide: other versions:
- Elasticsearch introduction
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Set up X-Pack
- Configuring X-Pack Java Clients
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- API conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Median Absolute Deviation Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Scripting
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Standard Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- Whitespace Tokenizer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Tokenizer
- Pattern Tokenizer
- Char Group Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Token Filters
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Multiplexer Token Filter
- Conditional Token Filter
- Predicate Token Filter Script
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Parsing synonym files
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Exclude mode settings example
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- MinHash Token Filter
- Remove Duplicates Token Filter
- Character Filters
- Modules
- Index modules
- Ingest node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Bytes Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- Managing the index lifecycle
- Getting started with index lifecycle management
- Policy phases and actions
- Set up index lifecycle management policy
- Using policies to manage index rollover
- Update policy
- Index lifecycle error handling
- Restoring snapshots of managed indices
- Start and stop index lifecycle management
- Using ILM with existing indices
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Monitor a cluster
- Frozen indices
- Set up a cluster for high availability
- Roll up or transform your data
- X-Pack APIs
- Info API
- Cross-cluster replication APIs
- Explore API
- Freeze index
- Index lifecycle management API
- Licensing APIs
- Machine learning APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Find file structure
- Flush jobs
- Forecast jobs
- Get calendars
- Get buckets
- Get overall buckets
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Migration APIs
- Rollup APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect Authenticate API
- OpenID Connect Logout API
- SSL certificate
- Transform APIs
- Unfreeze index
- Watcher APIs
- Definitions
- Secure a cluster
- Overview
- Configuring security
- Encrypting communications in Elasticsearch
- Encrypting communications in an Elasticsearch Docker Container
- Enabling cipher suites for stronger encryption
- Separating node-to-node and client traffic
- Configuring an Active Directory realm
- Configuring a file realm
- Configuring an LDAP realm
- Configuring a native realm
- Configuring a PKI realm
- Configuring a SAML realm
- Configuring a Kerberos realm
- Security files
- FIPS 140-2
- How security works
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Auditing security events
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Testing
- Glossary of terms
- Release highlights
- Breaking changes
- Release notes
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Completion Suggester
editCompletion Suggester
editIn order to understand the format of suggestions, please
read the Suggesters page first. For more flexible
search-as-you-type searches that do not use suggesters, see the
search_as_you_type
field type.
The completion
suggester provides auto-complete/search-as-you-type
functionality. This is a navigational feature to guide users to
relevant results as they are typing, improving search precision.
It is not meant for spell correction or did-you-mean functionality
like the term
or phrase
suggesters.
Ideally, auto-complete functionality should be as fast as a user
types to provide instant feedback relevant to what a user has already
typed in. Hence, completion
suggester is optimized for speed.
The suggester uses data structures that enable fast lookups,
but are costly to build and are stored in-memory.
Mapping
editTo use this feature, specify a special mapping for this field, which indexes the field values for fast completions.
PUT music { "mappings": { "properties" : { "suggest" : { "type" : "completion" }, "title" : { "type": "keyword" } } } }
Mapping supports the following parameters:
|
The index analyzer to use, defaults to |
|
The search analyzer to use, defaults to value of |
|
Preserves the separators, defaults to |
|
Enables position increments, defaults to |
|
Limits the length of a single input, defaults to |
Indexing
editYou index suggestions like any other field. A suggestion is made of an
input
and an optional weight
attribute. An input
is the expected
text to be matched by a suggestion query and the weight
determines how
the suggestions will be scored. Indexing a suggestion is as follows:
PUT music/_doc/1?refresh { "suggest" : { "input": [ "Nevermind", "Nirvana" ], "weight" : 34 } }
The following parameters are supported:
|
The input to store, this can be an array of strings or just a string. This field is mandatory. This value cannot contain the following UTF-16 control characters:
|
|
A positive integer or a string containing a positive integer, which defines a weight and allows you to rank your suggestions. This field is optional. |
You can index multiple suggestions for a document as follows:
PUT music/_doc/1?refresh { "suggest" : [ { "input": "Nevermind", "weight" : 10 }, { "input": "Nirvana", "weight" : 3 } ] }
You can use the following shorthand form. Note that you can not specify a weight with suggestion(s) in the shorthand form.
PUT music/_doc/1?refresh { "suggest" : [ "Nevermind", "Nirvana" ] }
Querying
editSuggesting works as usual, except that you have to specify the suggest
type as completion
. Suggestions are near real-time, which means
new suggestions can be made visible by refresh and
documents once deleted are never shown. This request:
POST music/_search?pretty { "suggest": { "song-suggest" : { "prefix" : "nir", "completion" : { "field" : "suggest" } } } }
Prefix used to search for suggestions |
|
Type of suggestions |
|
Name of the field to search for suggestions in |
returns this response:
{ "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits": ... "took": 2, "timed_out": false, "suggest": { "song-suggest" : [ { "text" : "nir", "offset" : 0, "length" : 3, "options" : [ { "text" : "Nirvana", "_index": "music", "_type": "_doc", "_id": "1", "_score": 1.0, "_source": { "suggest": ["Nevermind", "Nirvana"] } } ] } ] } }
_source
meta-field must be enabled, which is the default
behavior, to enable returning _source
with suggestions.
The configured weight for a suggestion is returned as _score
. The
text
field uses the input
of your indexed suggestion. Suggestions
return the full document _source
by default. The size of the _source
can impact performance due to disk fetch and network transport overhead.
To save some network overhead, filter out unnecessary fields from the _source
using source filtering to minimize
_source
size. Note that the _suggest endpoint doesn’t support source
filtering but using suggest on the _search
endpoint does:
POST music/_search { "_source": "suggest", "suggest": { "song-suggest" : { "prefix" : "nir", "completion" : { "field" : "suggest", "size" : 5 } } } }
Filter the source to return only the |
|
Name of the field to search for suggestions in |
|
Number of suggestions to return |
Which should look like:
{ "took": 6, "timed_out": false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits": { "total" : { "value": 0, "relation": "eq" }, "max_score" : null, "hits" : [] }, "suggest": { "song-suggest" : [ { "text" : "nir", "offset" : 0, "length" : 3, "options" : [ { "text" : "Nirvana", "_index": "music", "_type": "_doc", "_id": "1", "_score": 1.0, "_source": { "suggest": ["Nevermind", "Nirvana"] } } ] } ] } }
The basic completion suggester query supports the following parameters:
|
The name of the field on which to run the query (required). |
|
The number of suggestions to return (defaults to |
|
Whether duplicate suggestions should be filtered out (defaults to |
The completion suggester considers all documents in the index. See Context Suggester for an explanation of how to query a subset of documents instead.
In case of completion queries spanning more than one shard, the suggest is executed in two phases, where the last phase fetches the relevant documents from shards, implying executing completion requests against a single shard is more performant due to the document fetch overhead when the suggest spans multiple shards. To get best performance for completions, it is recommended to index completions into a single shard index. In case of high heap usage due to shard size, it is still recommended to break index into multiple shards instead of optimizing for completion performance.
Skip duplicate suggestions
editQueries can return duplicate suggestions coming from different documents.
It is possible to modify this behavior by setting skip_duplicates
to true.
When set, this option filters out documents with duplicate suggestions from the result.
POST music/_search?pretty { "suggest": { "song-suggest" : { "prefix" : "nor", "completion" : { "field" : "suggest", "skip_duplicates": true } } } }
When set to true, this option can slow down search because more suggestions need to be visited to find the top N.
Fuzzy queries
editThe completion suggester also supports fuzzy queries — this means you can have a typo in your search and still get results back.
POST music/_search?pretty { "suggest": { "song-suggest" : { "prefix" : "nor", "completion" : { "field" : "suggest", "fuzzy" : { "fuzziness" : 2 } } } } }
Suggestions that share the longest prefix to the query prefix
will
be scored higher.
The fuzzy query can take specific fuzzy parameters. The following parameters are supported:
|
The fuzziness factor, defaults to |
|
if set to |
|
Minimum length of the input before fuzzy
suggestions are returned, defaults |
|
Minimum length of the input, which is not
checked for fuzzy alternatives, defaults to |
|
If |
If you want to stick with the default values, but
still use fuzzy, you can either use fuzzy: {}
or fuzzy: true
.
Regex queries
editThe completion suggester also supports regex queries meaning you can express a prefix as a regular expression
POST music/_search?pretty { "suggest": { "song-suggest" : { "regex" : "n[ever|i]r", "completion" : { "field" : "suggest" } } } }
The regex query can take specific regex parameters. The following parameters are supported:
|
Possible flags are |
|
Regular expressions are dangerous because it’s easy to accidentally
create an innocuous looking one that requires an exponential number of
internal determinized automaton states (and corresponding RAM and CPU)
for Lucene to execute. Lucene prevents these using the
|