- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.10
- Set up Elasticsearch
- Installing Elasticsearch
- Run Elasticsearch locally
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Health Diagnostic settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Paginate search results
- Retrieve inner hits
- Retrieve selected fields
- Search across clusters
- Search multiple data streams and indices
- Search shard routing
- Search templates
- Search with synonyms
- Sort search results
- kNN search
- Semantic search
- Searching with query rules
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Multiple deployments writing to the same snapshot repository
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Update API key
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Field extraction
editField extraction
editThe goal of field extraction is simple; you have fields in your data with a bunch of information, but you only want to extract pieces and parts.
There are two options at your disposal:
- Grok is a regular expression dialect that supports aliased expressions that you can reuse. Because Grok sits on top of regular expressions (regex), any regular expressions are valid in grok as well.
- Dissect extracts structured fields out of text, using delimiters to define the matching pattern. Unlike grok, dissect doesn’t use regular expressions.
Let’s start with a simple example by adding the @timestamp
and message
fields to the my-index
mapping as indexed fields. To remain flexible, use
wildcard
as the field type for message
:
response = client.indices.create( index: 'my-index', body: { mappings: { properties: { "@timestamp": { format: 'strict_date_optional_time||epoch_second', type: 'date' }, message: { type: 'wildcard' } } } } ) puts response
PUT /my-index/ { "mappings": { "properties": { "@timestamp": { "format": "strict_date_optional_time||epoch_second", "type": "date" }, "message": { "type": "wildcard" } } } }
After mapping the fields you want to retrieve, index a few records from
your log data into Elasticsearch. The following request uses the bulk API
to index raw log data into my-index
. Instead of indexing all of your log
data, you can use a small sample to experiment with runtime fields.
response = client.bulk( index: 'my-index', refresh: true, body: [ { index: {} }, { timestamp: '2020-04-30T14:30:17-05:00', message: '40.135.0.0 - - [30/Apr/2020:14:30:17 -0500] "GET /images/hm_bg.jpg HTTP/1.0" 200 24736' }, { index: {} }, { timestamp: '2020-04-30T14:30:53-05:00', message: '232.0.0.0 - - [30/Apr/2020:14:30:53 -0500] "GET /images/hm_bg.jpg HTTP/1.0" 200 24736' }, { index: {} }, { timestamp: '2020-04-30T14:31:12-05:00', message: '26.1.0.0 - - [30/Apr/2020:14:31:12 -0500] "GET /images/hm_bg.jpg HTTP/1.0" 200 24736' }, { index: {} }, { timestamp: '2020-04-30T14:31:19-05:00', message: '247.37.0.0 - - [30/Apr/2020:14:31:19 -0500] "GET /french/splash_inet.html HTTP/1.0" 200 3781' }, { index: {} }, { timestamp: '2020-04-30T14:31:22-05:00', message: '247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] "GET /images/hm_nbg.jpg HTTP/1.0" 304 0' }, { index: {} }, { timestamp: '2020-04-30T14:31:27-05:00', message: '252.0.0.0 - - [30/Apr/2020:14:31:27 -0500] "GET /images/hm_bg.jpg HTTP/1.0" 200 24736' }, { index: {} }, { timestamp: '2020-04-30T14:31:28-05:00', message: 'not a valid apache log' } ] ) puts response
POST /my-index/_bulk?refresh {"index":{}} {"timestamp":"2020-04-30T14:30:17-05:00","message":"40.135.0.0 - - [30/Apr/2020:14:30:17 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"} {"index":{}} {"timestamp":"2020-04-30T14:30:53-05:00","message":"232.0.0.0 - - [30/Apr/2020:14:30:53 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"} {"index":{}} {"timestamp":"2020-04-30T14:31:12-05:00","message":"26.1.0.0 - - [30/Apr/2020:14:31:12 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"} {"index":{}} {"timestamp":"2020-04-30T14:31:19-05:00","message":"247.37.0.0 - - [30/Apr/2020:14:31:19 -0500] \"GET /french/splash_inet.html HTTP/1.0\" 200 3781"} {"index":{}} {"timestamp":"2020-04-30T14:31:22-05:00","message":"247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0"} {"index":{}} {"timestamp":"2020-04-30T14:31:27-05:00","message":"252.0.0.0 - - [30/Apr/2020:14:31:27 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"} {"index":{}} {"timestamp":"2020-04-30T14:31:28-05:00","message":"not a valid apache log"}
Extract an IP address from a log message (Grok)
editIf you want to retrieve results that include clientip
, you can add that
field as a runtime field in the mapping. The following runtime script defines a
grok pattern that extracts structured fields out of the message
field.
The script matches on the %{COMMONAPACHELOG}
log pattern, which understands
the structure of Apache logs. If the pattern matches (clientip != null
), the
script emits the value of the matching IP address. If the pattern doesn’t match,
the script just returns the field value without crashing.
PUT my-index/_mappings { "runtime": { "http.clientip": { "type": "ip", "script": """ String clientip=grok('%{COMMONAPACHELOG}').extract(doc["message"].value)?.clientip; if (clientip != null) emit(clientip); """ } } }
This condition ensures that the script doesn’t emit anything even if the pattern of the message doesn’t match. |
You can define a simple query to run a search for a specific IP address and
return all related fields. Use the fields
parameter of the search API to
retrieve the http.clientip
runtime field.
response = client.search( index: 'my-index', body: { query: { match: { "http.clientip": '40.135.0.0' } }, fields: [ 'http.clientip' ] } ) puts response
GET my-index/_search { "query": { "match": { "http.clientip": "40.135.0.0" } }, "fields" : ["http.clientip"] }
The response includes documents where the value for http.clientip
matches
40.135.0.0
.
{ "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my-index", "_id" : "Rq-ex3gBA_A0V6dYGLQ7", "_score" : 1.0, "_source" : { "timestamp" : "2020-04-30T14:30:17-05:00", "message" : "40.135.0.0 - - [30/Apr/2020:14:30:17 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736" }, "fields" : { "http.clientip" : [ "40.135.0.0" ] } } ] } }
Parse a string to extract part of a field (Dissect)
editInstead of matching on a log pattern like in the previous example, you can just define a dissect pattern to include the parts of the string that you want to discard.
For example, the log data at the start of this section includes a message
field. This field contains several pieces of data:
"message" : "247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0"
You can define a dissect pattern in a runtime field to extract the HTTP response code, which is
304
in the previous example.
PUT my-index/_mappings { "runtime": { "http.response": { "type": "long", "script": """ String response=dissect('%{clientip} %{ident} %{auth} [%{@timestamp}] "%{verb} %{request} HTTP/%{httpversion}" %{response} %{size}').extract(doc["message"].value)?.response; if (response != null) emit(Integer.parseInt(response)); """ } } }
You can then run a query to retrieve a specific HTTP response using the
http.response
runtime field:
response = client.search( index: 'my-index', body: { query: { match: { "http.response": '304' } }, fields: [ 'http.response' ] } ) puts response
GET my-index/_search { "query": { "match": { "http.response": "304" } }, "fields" : ["http.response"] }
The response includes a single document where the HTTP response is 304
:
{ "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my-index", "_id" : "Sq-ex3gBA_A0V6dYGLQ7", "_score" : 1.0, "_source" : { "timestamp" : "2020-04-30T14:31:22-05:00", "message" : "247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0" }, "fields" : { "http.response" : [ 304 ] } } ] } }
Split values in a field by a separator (Dissect)
editLet’s say you want to extract part of a field like in the previous example, but you want to split on specific values. You can use a dissect pattern to extract only the information that you want, and also return that data in a specific format.
For example, let’s say you have a bunch of garbage collection (gc) log data from Elasticsearch in this format:
[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit] class space used 266K, capacity 384K, committed 384K, reserved 1048576K
You only want to extract the used
, capacity
, and committed
data, along with
the associated values. Let’s index some a few documents containing log data to use as
an example:
response = client.bulk( index: 'my-index', refresh: true, body: [ { index: {} }, { gc: '[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit] class space used 266K, capacity 384K, committed 384K, reserved 1048576K' }, { index: {} }, { gc: '[2021-03-24T20:27:24.184+0000][90239][gc,heap,exit] class space used 15255K, capacity 16726K, committed 16844K, reserved 1048576K' }, { index: {} }, { gc: '[2021-03-24T20:27:24.184+0000][90239][gc,heap,exit] Metaspace used 115409K, capacity 119541K, committed 120248K, reserved 1153024K' }, { index: {} }, { gc: '[2021-04-19T15:03:21.735+0000][84408][gc,heap,exit] class space used 14503K, capacity 15894K, committed 15948K, reserved 1048576K' }, { index: {} }, { gc: '[2021-04-19T15:03:21.735+0000][84408][gc,heap,exit] Metaspace used 107719K, capacity 111775K, committed 112724K, reserved 1146880K' }, { index: {} }, { gc: '[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit] class space used 266K, capacity 367K, committed 384K, reserved 1048576K' } ] ) puts response
POST /my-index/_bulk?refresh {"index":{}} {"gc": "[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit] class space used 266K, capacity 384K, committed 384K, reserved 1048576K"} {"index":{}} {"gc": "[2021-03-24T20:27:24.184+0000][90239][gc,heap,exit] class space used 15255K, capacity 16726K, committed 16844K, reserved 1048576K"} {"index":{}} {"gc": "[2021-03-24T20:27:24.184+0000][90239][gc,heap,exit] Metaspace used 115409K, capacity 119541K, committed 120248K, reserved 1153024K"} {"index":{}} {"gc": "[2021-04-19T15:03:21.735+0000][84408][gc,heap,exit] class space used 14503K, capacity 15894K, committed 15948K, reserved 1048576K"} {"index":{}} {"gc": "[2021-04-19T15:03:21.735+0000][84408][gc,heap,exit] Metaspace used 107719K, capacity 111775K, committed 112724K, reserved 1146880K"} {"index":{}} {"gc": "[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit] class space used 266K, capacity 367K, committed 384K, reserved 1048576K"}
Looking at the data again, there’s a timestamp, some other data that you’re not
interested in, and then the used
, capacity
, and committed
data:
[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit] class space used 266K, capacity 384K, committed 384K, reserved 1048576K
You can assign variables to each part of the data in the gc
field, and then return
only the parts that you want. Anything in curly braces {}
is considered a variable.
For example, the variables [%{@timestamp}][%{code}][%{desc}]
will match the first
three chunks of data, all of which are in square brackets []
.
[%{@timestamp}][%{code}][%{desc}] %{ident} used %{usize}, capacity %{csize}, committed %{comsize}, reserved %{rsize}
Your dissect pattern can include the terms used
, capacity
, and committed
instead
of using variables, because you want to return those terms exactly. You also assign
variables to the values you want to return, such as %{usize}
, %{csize}
, and
%{comsize}
. The separator in the log data is a comma, so your dissect pattern also
needs to use that separator.
Now that you have a dissect pattern, you can include it in a Painless script as part
of a runtime field. The script uses your dissect pattern to split apart the gc
field, and then returns exactly the information that you want as defined by the
emit
method. Because dissect uses simple syntax, you just need to tell it exactly
what you want.
The following pattern tells dissect to return the term used
, a blank space, the value
from gc.usize
, and a comma. This pattern repeats for the other data that you
want to retrieve. While this pattern might not be as useful in production, it provides
a lot of flexibility to experiment with and manipulate your data. In a production
setting, you might just want to use emit(gc.usize)
and then aggregate on that value
or use it in computations.
emit("used" + ' ' + gc.usize + ', ' + "capacity" + ' ' + gc.csize + ', ' + "committed" + ' ' + gc.comsize)
Putting it all together, you can create a runtime field named gc_size
in a search
request. Using the fields
option, you can retrieve all values
for the gc_size
runtime field. This query also includes a bucket aggregation to group
your data.
GET my-index/_search { "runtime_mappings": { "gc_size": { "type": "keyword", "script": """ Map gc=dissect('[%{@timestamp}][%{code}][%{desc}] %{ident} used %{usize}, capacity %{csize}, committed %{comsize}, reserved %{rsize}').extract(doc["gc.keyword"].value); if (gc != null) emit("used" + ' ' + gc.usize + ', ' + "capacity" + ' ' + gc.csize + ', ' + "committed" + ' ' + gc.comsize); """ } }, "size": 1, "aggs": { "sizes": { "terms": { "field": "gc_size", "size": 10 } } }, "fields" : ["gc_size"] }
The response includes the data from the gc_size
field, formatted exactly as you
defined it in the dissect pattern!
{ "took" : 2, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 6, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my-index", "_id" : "GXx3H3kBKGE42WRNlddJ", "_score" : 1.0, "_source" : { "gc" : "[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit] class space used 266K, capacity 384K, committed 384K, reserved 1048576K" }, "fields" : { "gc_size" : [ "used 266K, capacity 384K, committed 384K" ] } } ] }, "aggregations" : { "sizes" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : "used 107719K, capacity 111775K, committed 112724K", "doc_count" : 1 }, { "key" : "used 115409K, capacity 119541K, committed 120248K", "doc_count" : 1 }, { "key" : "used 14503K, capacity 15894K, committed 15948K", "doc_count" : 1 }, { "key" : "used 15255K, capacity 16726K, committed 16844K", "doc_count" : 1 }, { "key" : "used 266K, capacity 367K, committed 384K", "doc_count" : 1 }, { "key" : "used 266K, capacity 384K, committed 384K", "doc_count" : 1 } ] } } }
On this page