- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.10
- Set up Elasticsearch
- Installing Elasticsearch
- Run Elasticsearch locally
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Health Diagnostic settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Paginate search results
- Retrieve inner hits
- Retrieve selected fields
- Search across clusters
- Search multiple data streams and indices
- Search shard routing
- Search templates
- Search with synonyms
- Sort search results
- kNN search
- Semantic search
- Searching with query rules
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Multiple deployments writing to the same snapshot repository
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Update API key
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Sort search results
editSort search results
editAllows you to add one or more sorts on specific fields. Each sort can be
reversed as well. The sort is defined on a per field level, with special
field name for _score
to sort by score, and _doc
to sort by index order.
Assuming the following index mapping:
response = client.indices.create( index: 'my-index-000001', body: { mappings: { properties: { post_date: { type: 'date' }, user: { type: 'keyword' }, name: { type: 'keyword' }, age: { type: 'integer' } } } } ) puts response
res, err := es.Indices.Create( "my-index-000001", es.Indices.Create.WithBody(strings.NewReader(`{ "mappings": { "properties": { "post_date": { "type": "date" }, "user": { "type": "keyword" }, "name": { "type": "keyword" }, "age": { "type": "integer" } } } }`)), ) fmt.Println(res, err)
PUT /my-index-000001 { "mappings": { "properties": { "post_date": { "type": "date" }, "user": { "type": "keyword" }, "name": { "type": "keyword" }, "age": { "type": "integer" } } } }
response = client.search( index: 'my-index-000001', body: { sort: [ { post_date: { order: 'asc', format: 'strict_date_optional_time_nanos' } }, 'user', { name: 'desc' }, { age: 'desc' }, '_score' ], query: { term: { user: 'kimchy' } } } ) puts response
GET /my-index-000001/_search { "sort" : [ { "post_date" : {"order" : "asc", "format": "strict_date_optional_time_nanos"}}, "user", { "name" : "desc" }, { "age" : "desc" }, "_score" ], "query" : { "term" : { "user" : "kimchy" } } }
_doc
has no real use-case besides being the most efficient sort order.
So if you don’t care about the order in which documents are returned, then you
should sort by _doc
. This especially helps when scrolling.
Sort Values
editThe search response includes sort
values for each document. Use the format
parameter to specify a date format for the sort
values of date
and date_nanos
fields. The following
search returns sort
values for the post_date
field in the
strict_date_optional_time_nanos
format.
response = client.search( index: 'my-index-000001', body: { sort: [ { post_date: { format: 'strict_date_optional_time_nanos' } } ], query: { term: { user: 'kimchy' } } } ) puts response
GET /my-index-000001/_search { "sort" : [ { "post_date" : {"format": "strict_date_optional_time_nanos"}} ], "query" : { "term" : { "user" : "kimchy" } } }
Sort Order
editThe order
option can have the following values:
|
Sort in ascending order |
|
Sort in descending order |
The order defaults to desc
when sorting on the _score
, and defaults
to asc
when sorting on anything else.
Sort mode option
editElasticsearch supports sorting by array or multi-valued fields. The mode
option
controls what array value is picked for sorting the document it belongs
to. The mode
option can have the following values:
|
Pick the lowest value. |
|
Pick the highest value. |
|
Use the sum of all values as sort value. Only applicable for number based array fields. |
|
Use the average of all values as sort value. Only applicable for number based array fields. |
|
Use the median of all values as sort value. Only applicable for number based array fields. |
The default sort mode in the ascending sort order is min
— the lowest value
is picked. The default sort mode in the descending order is max
— the highest value is picked.
Sort mode example usage
editIn the example below the field price has multiple prices per document. In this case the result hits will be sorted by price ascending based on the average price per document.
response = client.index( index: 'my-index-000001', id: 1, refresh: true, body: { product: 'chocolate', price: [ 20, 4 ] } ) puts response response = client.search( body: { query: { term: { product: 'chocolate' } }, sort: [ { price: { order: 'asc', mode: 'avg' } } ] } ) puts response
{ res, err := es.Index( "my-index-000001", strings.NewReader(`{ "product": "chocolate", "price": [ 20, 4 ] }`), es.Index.WithDocumentID("1"), es.Index.WithRefresh("true"), es.Index.WithPretty(), ) fmt.Println(res, err) } { res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "term": { "product": "chocolate" } }, "sort": [ { "price": { "order": "asc", "mode": "avg" } } ] }`)), es.Search.WithPretty(), ) fmt.Println(res, err) }
PUT /my-index-000001/_doc/1?refresh { "product": "chocolate", "price": [20, 4] } POST /_search { "query" : { "term" : { "product" : "chocolate" } }, "sort" : [ {"price" : {"order" : "asc", "mode" : "avg"}} ] }
Sorting numeric fields
editFor numeric fields it is also possible to cast the values from one type
to another using the numeric_type
option.
This option accepts the following values: ["double", "long", "date", "date_nanos"
]
and can be useful for searches across multiple data streams or indices where the sort field is mapped differently.
Consider for instance these two indices:
response = client.indices.create( index: 'index_double', body: { mappings: { properties: { field: { type: 'double' } } } } ) puts response
res, err := es.Indices.Create( "index_double", es.Indices.Create.WithBody(strings.NewReader(`{ "mappings": { "properties": { "field": { "type": "double" } } } }`)), ) fmt.Println(res, err)
PUT /index_double { "mappings": { "properties": { "field": { "type": "double" } } } }
response = client.indices.create( index: 'index_long', body: { mappings: { properties: { field: { type: 'long' } } } } ) puts response
res, err := es.Indices.Create( "index_long", es.Indices.Create.WithBody(strings.NewReader(`{ "mappings": { "properties": { "field": { "type": "long" } } } }`)), ) fmt.Println(res, err)
PUT /index_long { "mappings": { "properties": { "field": { "type": "long" } } } }
Since field
is mapped as a double
in the first index and as a long
in the second index, it is not possible to use this field to sort requests
that query both indices by default. However you can force the type to one
or the other with the numeric_type
option in order to force a specific
type for all indices:
$params = [ 'index' => 'index_long,index_double', 'body' => [ 'sort' => [ [ 'field' => [ 'numeric_type' => 'double', ], ], ], ], ]; $response = $client->search($params);
resp = client.search( index=["index_long", "index_double"], body={"sort": [{"field": {"numeric_type": "double"}}]}, ) print(resp)
response = client.search( index: 'index_long,index_double', body: { sort: [ { field: { numeric_type: 'double' } } ] } ) puts response
res, err := es.Search( es.Search.WithIndex("index_long,index_double"), es.Search.WithBody(strings.NewReader(`{ "sort": [ { "field": { "numeric_type": "double" } } ] }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ index: 'index_long,index_double', body: { sort: [ { field: { numeric_type: 'double' } } ] } }) console.log(response)
POST /index_long,index_double/_search { "sort" : [ { "field" : { "numeric_type" : "double" } } ] }
In the example above, values for the index_long
index are casted to
a double in order to be compatible with the values produced by the
index_double
index.
It is also possible to transform a floating point field into a long
but note that in this case floating points are replaced by the largest
value that is less than or equal (greater than or equal if the value
is negative) to the argument and is equal to a mathematical integer.
This option can also be used to convert a date
field that uses millisecond
resolution to a date_nanos
field with nanosecond resolution.
Consider for instance these two indices:
response = client.indices.create( index: 'index_double', body: { mappings: { properties: { field: { type: 'date' } } } } ) puts response
res, err := es.Indices.Create( "index_double", es.Indices.Create.WithBody(strings.NewReader(`{ "mappings": { "properties": { "field": { "type": "date" } } } }`)), ) fmt.Println(res, err)
PUT /index_double { "mappings": { "properties": { "field": { "type": "date" } } } }
response = client.indices.create( index: 'index_long', body: { mappings: { properties: { field: { type: 'date_nanos' } } } } ) puts response
res, err := es.Indices.Create( "index_long", es.Indices.Create.WithBody(strings.NewReader(`{ "mappings": { "properties": { "field": { "type": "date_nanos" } } } }`)), ) fmt.Println(res, err)
PUT /index_long { "mappings": { "properties": { "field": { "type": "date_nanos" } } } }
Values in these indices are stored with different resolutions so sorting on these
fields will always sort the date
before the date_nanos
(ascending order).
With the numeric_type
type option it is possible to set a single resolution for
the sort, setting to date
will convert the date_nanos
to the millisecond resolution
while date_nanos
will convert the values in the date
field to the nanoseconds resolution:
$params = [ 'index' => 'index_long,index_double', 'body' => [ 'sort' => [ [ 'field' => [ 'numeric_type' => 'date_nanos', ], ], ], ], ]; $response = $client->search($params);
resp = client.search( index=["index_long", "index_double"], body={"sort": [{"field": {"numeric_type": "date_nanos"}}]}, ) print(resp)
res, err := es.Search( es.Search.WithIndex("index_long,index_double"), es.Search.WithBody(strings.NewReader(`{ "sort": [ { "field": { "numeric_type": "date_nanos" } } ] }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ index: 'index_long,index_double', body: { sort: [ { field: { numeric_type: 'date_nanos' } } ] } }) console.log(response)
POST /index_long,index_double/_search { "sort" : [ { "field" : { "numeric_type" : "date_nanos" } } ] }
To avoid overflow, the conversion to date_nanos
cannot be applied on dates before
1970 and after 2262 as nanoseconds are represented as longs.
Sorting within nested objects.
editElasticsearch also supports sorting by
fields that are inside one or more nested objects. The sorting by nested
field support has a nested
sort option with the following properties:
-
path
- Defines on which nested object to sort. The actual sort field must be a direct field inside this nested object. When sorting by nested field, this field is mandatory.
-
filter
-
A filter that the inner objects inside the nested path
should match with in order for its field values to be taken into account
by sorting. Common case is to repeat the query / filter inside the
nested filter or query. By default no
filter
is active. -
max_children
- The maximum number of children to consider per root document when picking the sort value. Defaults to unlimited.
-
nested
-
Same as top-level
nested
but applies to another nested path within the current nested object.
Elasticsearch will throw an error if a nested field is defined in a sort without
a nested
context.
Nested sorting examples
editIn the below example offer
is a field of type nested
.
The nested path
needs to be specified; otherwise, Elasticsearch doesn’t know on what nested level sort values need to be captured.
$params = [ 'body' => [ 'query' => [ 'term' => [ 'product' => 'chocolate', ], ], 'sort' => [ [ 'offer.price' => [ 'mode' => 'avg', 'order' => 'asc', 'nested' => [ 'path' => 'offer', 'filter' => [ 'term' => [ 'offer.color' => 'blue', ], ], ], ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": {"term": {"product": "chocolate"}}, "sort": [ { "offer.price": { "mode": "avg", "order": "asc", "nested": { "path": "offer", "filter": {"term": {"offer.color": "blue"}}, }, } } ], }, ) print(resp)
response = client.search( body: { query: { term: { product: 'chocolate' } }, sort: [ { "offer.price": { mode: 'avg', order: 'asc', nested: { path: 'offer', filter: { term: { "offer.color": 'blue' } } } } } ] } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "term": { "product": "chocolate" } }, "sort": [ { "offer.price": { "mode": "avg", "order": "asc", "nested": { "path": "offer", "filter": { "term": { "offer.color": "blue" } } } } } ] }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { term: { product: 'chocolate' } }, sort: [ { 'offer.price': { mode: 'avg', order: 'asc', nested: { path: 'offer', filter: { term: { 'offer.color': 'blue' } } } } } ] } }) console.log(response)
POST /_search { "query" : { "term" : { "product" : "chocolate" } }, "sort" : [ { "offer.price" : { "mode" : "avg", "order" : "asc", "nested": { "path": "offer", "filter": { "term" : { "offer.color" : "blue" } } } } } ] }
In the below example parent
and child
fields are of type nested
.
The nested.path
needs to be specified at each level; otherwise, Elasticsearch doesn’t know on what nested level sort values need to be captured.
$params = [ 'body' => [ 'query' => [ 'nested' => [ 'path' => 'parent', 'query' => [ 'bool' => [ 'must' => [ 'range' => [ 'parent.age' => [ 'gte' => 21, ], ], ], 'filter' => [ 'nested' => [ 'path' => 'parent.child', 'query' => [ 'match' => [ 'parent.child.name' => 'matt', ], ], ], ], ], ], ], ], 'sort' => [ [ 'parent.child.age' => [ 'mode' => 'min', 'order' => 'asc', 'nested' => [ 'path' => 'parent', 'filter' => [ 'range' => [ 'parent.age' => [ 'gte' => 21, ], ], ], 'nested' => [ 'path' => 'parent.child', 'filter' => [ 'match' => [ 'parent.child.name' => 'matt', ], ], ], ], ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "nested": { "path": "parent", "query": { "bool": { "must": {"range": {"parent.age": {"gte": 21}}}, "filter": { "nested": { "path": "parent.child", "query": { "match": {"parent.child.name": "matt"} }, } }, } }, } }, "sort": [ { "parent.child.age": { "mode": "min", "order": "asc", "nested": { "path": "parent", "filter": {"range": {"parent.age": {"gte": 21}}}, "nested": { "path": "parent.child", "filter": { "match": {"parent.child.name": "matt"} }, }, }, } } ], }, ) print(resp)
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "nested": { "path": "parent", "query": { "bool": { "must": { "range": { "parent.age": { "gte": 21 } } }, "filter": { "nested": { "path": "parent.child", "query": { "match": { "parent.child.name": "matt" } } } } } } } }, "sort": [ { "parent.child.age": { "mode": "min", "order": "asc", "nested": { "path": "parent", "filter": { "range": { "parent.age": { "gte": 21 } } }, "nested": { "path": "parent.child", "filter": { "match": { "parent.child.name": "matt" } } } } } } ] }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { nested: { path: 'parent', query: { bool: { must: { range: { 'parent.age': { gte: 21 } } }, filter: { nested: { path: 'parent.child', query: { match: { 'parent.child.name': 'matt' } } } } } } } }, sort: [ { 'parent.child.age': { mode: 'min', order: 'asc', nested: { path: 'parent', filter: { range: { 'parent.age': { gte: 21 } } }, nested: { path: 'parent.child', filter: { match: { 'parent.child.name': 'matt' } } } } } } ] } }) console.log(response)
POST /_search { "query": { "nested": { "path": "parent", "query": { "bool": { "must": {"range": {"parent.age": {"gte": 21}}}, "filter": { "nested": { "path": "parent.child", "query": {"match": {"parent.child.name": "matt"}} } } } } } }, "sort" : [ { "parent.child.age" : { "mode" : "min", "order" : "asc", "nested": { "path": "parent", "filter": { "range": {"parent.age": {"gte": 21}} }, "nested": { "path": "parent.child", "filter": { "match": {"parent.child.name": "matt"} } } } } } ] }
Nested sorting is also supported when sorting by scripts and sorting by geo distance.
Missing Values
editThe missing
parameter specifies how docs which are missing
the sort field should be treated: The missing
value can be
set to _last
, _first
, or a custom value (that
will be used for missing docs as the sort value).
The default is _last
.
For example:
response = client.search( body: { sort: [ { price: { missing: '_last' } } ], query: { term: { product: 'chocolate' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "sort": [ { "price": { "missing": "_last" } } ], "query": { "term": { "product": "chocolate" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
GET /_search { "sort" : [ { "price" : {"missing" : "_last"} } ], "query" : { "term" : { "product" : "chocolate" } } }
If a nested inner object doesn’t match with
the nested.filter
then a missing value is used.
Ignoring Unmapped Fields
editBy default, the search request will fail if there is no mapping
associated with a field. The unmapped_type
option allows you to ignore
fields that have no mapping and not sort by them. The value of this
parameter is used to determine what sort values to emit. Here is an
example of how it can be used:
response = client.search( body: { sort: [ { price: { unmapped_type: 'long' } } ], query: { term: { product: 'chocolate' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "sort": [ { "price": { "unmapped_type": "long" } } ], "query": { "term": { "product": "chocolate" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
GET /_search { "sort" : [ { "price" : {"unmapped_type" : "long"} } ], "query" : { "term" : { "product" : "chocolate" } } }
If any of the indices that are queried doesn’t have a mapping for price
then Elasticsearch will handle it as if there was a mapping of type
long
, with all documents in this index having no value for this field.
Geo Distance Sorting
editAllow to sort by _geo_distance
. Here is an example, assuming pin.location
is a field of type geo_point
:
response = client.search( body: { sort: [ { _geo_distance: { "pin.location": [ -70, 40 ], order: 'asc', unit: 'km', mode: 'min', distance_type: 'arc', ignore_unmapped: true } } ], query: { term: { user: 'kimchy' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "sort": [ { "_geo_distance": { "pin.location": [ -70, 40 ], "order": "asc", "unit": "km", "mode": "min", "distance_type": "arc", "ignore_unmapped": true } } ], "query": { "term": { "user": "kimchy" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
GET /_search { "sort" : [ { "_geo_distance" : { "pin.location" : [-70, 40], "order" : "asc", "unit" : "km", "mode" : "min", "distance_type" : "arc", "ignore_unmapped": true } } ], "query" : { "term" : { "user" : "kimchy" } } }
-
distance_type
-
How to compute the distance. Can either be
arc
(default), orplane
(faster, but inaccurate on long distances and close to the poles). -
mode
-
What to do in case a field has several geo points. By default, the shortest
distance is taken into account when sorting in ascending order and the
longest distance when sorting in descending order. Supported values are
min
,max
,median
andavg
. -
unit
-
The unit to use when computing sort values. The default is
m
(meters). -
ignore_unmapped
-
Indicates if the unmapped field should be treated as a missing value. Setting it to
true
is equivalent to specifying anunmapped_type
in the field sort. The default isfalse
(unmapped field cause the search to fail).
geo distance sorting does not support configurable missing values: the
distance will always be considered equal to Infinity
when a document does not
have values for the field that is used for distance computation.
The following formats are supported in providing the coordinates:
Lat Lon as Properties
editresponse = client.search( body: { sort: [ { _geo_distance: { "pin.location": { lat: 40, lon: -70 }, order: 'asc', unit: 'km' } } ], query: { term: { user: 'kimchy' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "sort": [ { "_geo_distance": { "pin.location": { "lat": 40, "lon": -70 }, "order": "asc", "unit": "km" } } ], "query": { "term": { "user": "kimchy" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
GET /_search { "sort" : [ { "_geo_distance" : { "pin.location" : { "lat" : 40, "lon" : -70 }, "order" : "asc", "unit" : "km" } } ], "query" : { "term" : { "user" : "kimchy" } } }
Lat Lon as WKT String
editFormat in Well-Known Text.
response = client.search( body: { sort: [ { _geo_distance: { "pin.location": 'POINT (-70 40)', order: 'asc', unit: 'km' } } ], query: { term: { user: 'kimchy' } } } ) puts response
GET /_search { "sort": [ { "_geo_distance": { "pin.location": "POINT (-70 40)", "order": "asc", "unit": "km" } } ], "query": { "term": { "user": "kimchy" } } }
Geohash
editresponse = client.search( body: { sort: [ { _geo_distance: { "pin.location": 'drm3btev3e86', order: 'asc', unit: 'km' } } ], query: { term: { user: 'kimchy' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "sort": [ { "_geo_distance": { "pin.location": "drm3btev3e86", "order": "asc", "unit": "km" } } ], "query": { "term": { "user": "kimchy" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
GET /_search { "sort": [ { "_geo_distance": { "pin.location": "drm3btev3e86", "order": "asc", "unit": "km" } } ], "query": { "term": { "user": "kimchy" } } }
Lat Lon as Array
editFormat in [lon, lat]
, note, the order of lon/lat here in order to
conform with GeoJSON.
response = client.search( body: { sort: [ { _geo_distance: { "pin.location": [ -70, 40 ], order: 'asc', unit: 'km' } } ], query: { term: { user: 'kimchy' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "sort": [ { "_geo_distance": { "pin.location": [ -70, 40 ], "order": "asc", "unit": "km" } } ], "query": { "term": { "user": "kimchy" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
GET /_search { "sort": [ { "_geo_distance": { "pin.location": [ -70, 40 ], "order": "asc", "unit": "km" } } ], "query": { "term": { "user": "kimchy" } } }
Multiple reference points
editMultiple geo points can be passed as an array containing any geo_point
format, for example
response = client.search( body: { sort: [ { _geo_distance: { "pin.location": [ [ -70, 40 ], [ -71, 42 ] ], order: 'asc', unit: 'km' } } ], query: { term: { user: 'kimchy' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "sort": [ { "_geo_distance": { "pin.location": [ [ -70, 40 ], [ -71, 42 ] ], "order": "asc", "unit": "km" } } ], "query": { "term": { "user": "kimchy" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
GET /_search { "sort": [ { "_geo_distance": { "pin.location": [ [ -70, 40 ], [ -71, 42 ] ], "order": "asc", "unit": "km" } } ], "query": { "term": { "user": "kimchy" } } }
and so forth.
The final distance for a document will then be min
/max
/avg
(defined via mode
) distance of all points contained in the document to all points given in the sort request.
Script Based Sorting
editAllow to sort based on custom scripts, here is an example:
response = client.search( body: { query: { term: { user: 'kimchy' } }, sort: { _script: { type: 'number', script: { lang: 'painless', source: "doc['field_name'].value * params.factor", params: { factor: 1.1 } }, order: 'asc' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "term": { "user": "kimchy" } }, "sort": { "_script": { "type": "number", "script": { "lang": "painless", "source": "doc['field_name'].value * params.factor", "params": { "factor": 1.1 } }, "order": "asc" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
GET /_search { "query": { "term": { "user": "kimchy" } }, "sort": { "_script": { "type": "number", "script": { "lang": "painless", "source": "doc['field_name'].value * params.factor", "params": { "factor": 1.1 } }, "order": "asc" } } }
Track Scores
editWhen sorting on a field, scores are not computed. By setting
track_scores
to true, scores will still be computed and tracked.
response = client.search( body: { track_scores: true, sort: [ { post_date: { order: 'desc' } }, { name: 'desc' }, { age: 'desc' } ], query: { term: { user: 'kimchy' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "track_scores": true, "sort": [ { "post_date": { "order": "desc" } }, { "name": "desc" }, { "age": "desc" } ], "query": { "term": { "user": "kimchy" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
GET /_search { "track_scores": true, "sort" : [ { "post_date" : {"order" : "desc"} }, { "name" : "desc" }, { "age" : "desc" } ], "query" : { "term" : { "user" : "kimchy" } } }
Memory Considerations
editWhen sorting, the relevant sorted field values are loaded into memory.
This means that per shard, there should be enough memory to contain
them. For string based types, the field sorted on should not be analyzed
/ tokenized. For numeric types, if possible, it is recommended to
explicitly set the type to narrower types (like short
, integer
and
float
).
On this page
- Sort Values
- Sort Order
- Sort mode option
- Sort mode example usage
- Sorting numeric fields
- Sorting within nested objects.
- Nested sorting examples
- Missing Values
- Ignoring Unmapped Fields
- Geo Distance Sorting
- Lat Lon as Properties
- Lat Lon as WKT String
- Geohash
- Lat Lon as Array
- Multiple reference points
- Script Based Sorting
- Track Scores
- Memory Considerations