- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.10
- Set up Elasticsearch
- Installing Elasticsearch
- Run Elasticsearch locally
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Health Diagnostic settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Paginate search results
- Retrieve inner hits
- Retrieve selected fields
- Search across clusters
- Search multiple data streams and indices
- Search shard routing
- Search templates
- Search with synonyms
- Sort search results
- kNN search
- Semantic search
- Searching with query rules
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Multiple deployments writing to the same snapshot repository
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Update API key
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Significant text aggregation
editSignificant text aggregation
editAn aggregation that returns interesting or unusual occurrences of free-text terms in a set. It is like the significant terms aggregation but differs in that:
-
It is specifically designed for use on type
text
fields - It does not require field data or doc-values
- It re-analyzes text content on-the-fly meaning it can also filter duplicate sections of noisy text that otherwise tend to skew statistics.
Re-analyzing large result sets will require a lot of time and memory. It is recommended that the significant_text aggregation is used as a child of either the sampler or diversified sampler aggregation to limit the analysis to a small selection of top-matching documents e.g. 200. This will typically improve speed, memory use and quality of results.
Example use cases:
- Suggesting "H5N1" when users search for "bird flu" to help expand queries
- Suggesting keywords relating to stock symbol $ATI for use in an automated news classifier
In these cases the words being selected are not simply the most popular terms in results. The most popular words tend to be very boring (and, of, the, we, I, they …). The significant words are the ones that have undergone a significant change in popularity measured between a foreground and background set. If the term "H5N1" only exists in 5 documents in a 10 million document index and yet is found in 4 of the 100 documents that make up a user’s search results that is significant and probably very relevant to their search. 5/10,000,000 vs 4/100 is a big swing in frequency.
Basic use
editIn the typical use case, the foreground set of interest is a selection of the top-matching search results for a query and the background set used for statistical comparisons is the index or indices from which the results were gathered.
Example:
response = client.search( index: 'news', body: { query: { match: { content: 'Bird flu' } }, aggregations: { my_sample: { sampler: { shard_size: 100 }, aggregations: { keywords: { significant_text: { field: 'content' } } } } } } ) puts response
GET news/_search { "query": { "match": { "content": "Bird flu" } }, "aggregations": { "my_sample": { "sampler": { "shard_size": 100 }, "aggregations": { "keywords": { "significant_text": { "field": "content" } } } } } }
Response:
{ "took": 9, "timed_out": false, "_shards": ..., "hits": ..., "aggregations" : { "my_sample": { "doc_count": 100, "keywords" : { "doc_count": 100, "buckets" : [ { "key": "h5n1", "doc_count": 4, "score": 4.71235374214817, "bg_count": 5 } ... ] } } } }
The results show that "h5n1" is one of several terms strongly associated with bird flu.
It only occurs 5 times in our index as a whole (see the bg_count
) and yet 4 of these
were lucky enough to appear in our 100 document sample of "bird flu" results. That suggests
a significant word and one which the user can potentially add to their search.
Dealing with noisy data using filter_duplicate_text
editFree-text fields often contain a mix of original content and mechanical copies of text (cut-and-paste biographies, email reply chains, retweets, boilerplate headers/footers, page navigation menus, sidebar news links, copyright notices, standard disclaimers, addresses).
In real-world data these duplicate sections of text tend to feature heavily in significant_text
results if they aren’t filtered out.
Filtering near-duplicate text is a difficult task at index-time but we can cleanse the data on-the-fly at query time using the
filter_duplicate_text
setting.
First let’s look at an unfiltered real-world example using the Signal media dataset of a million news articles covering a wide variety of news. Here are the raw significant text results for a search for the articles mentioning "elasticsearch":
{ ... "aggregations": { "sample": { "doc_count": 35, "keywords": { "doc_count": 35, "buckets": [ { "key": "elasticsearch", "doc_count": 35, "score": 28570.428571428572, "bg_count": 35 }, ... { "key": "currensee", "doc_count": 8, "score": 6530.383673469388, "bg_count": 8 }, ... { "key": "pozmantier", "doc_count": 4, "score": 3265.191836734694, "bg_count": 4 }, ... }
The uncleansed documents have thrown up some odd-looking terms that are, on the face of it, statistically correlated with appearances of our search term "elasticsearch" e.g. "pozmantier". We can drill down into examples of these documents to see why pozmantier is connected using this query:
response = client.search( index: 'news', body: { query: { simple_query_string: { query: '+elasticsearch +pozmantier' } }, _source: [ 'title', 'source' ], highlight: { fields: { content: {} } } } ) puts response
GET news/_search { "query": { "simple_query_string": { "query": "+elasticsearch +pozmantier" } }, "_source": [ "title", "source" ], "highlight": { "fields": { "content": {} } } }
The results show a series of very similar news articles about a judging panel for a number of tech projects:
{ ... "hits": { "hits": [ { ... "_source": { "source": "Presentation Master", "title": "T.E.N. Announces Nominees for the 2015 ISE® North America Awards" }, "highlight": { "content": [ "City of San Diego Mike <em>Pozmantier</em>, Program Manager, Cyber Security Division, Department of", " Janus, Janus <em>ElasticSearch</em> Security Visualization Engine " ] } }, { ... "_source": { "source": "RCL Advisors", "title": "T.E.N. Announces Nominees for the 2015 ISE(R) North America Awards" }, "highlight": { "content": [ "Mike <em>Pozmantier</em>, Program Manager, Cyber Security Division, Department of Homeland Security S&T", "Janus, Janus <em>ElasticSearch</em> Security Visualization Engine" ] } }, ...
Mike Pozmantier was one of many judges on a panel and elasticsearch was used in one of many projects being judged.
As is typical, this lengthy press release was cut-and-paste by a variety of news sites and consequently any rare names, numbers or typos they contain become statistically correlated with our matching query.
Fortunately similar documents tend to rank similarly so as part of examining the stream of top-matching documents the significant_text
aggregation can apply a filter to remove sequences of any 6 or more tokens that have already been seen. Let’s try this same query now but
with the filter_duplicate_text
setting turned on:
response = client.search( index: 'news', body: { query: { match: { content: 'elasticsearch' } }, aggregations: { sample: { sampler: { shard_size: 100 }, aggregations: { keywords: { significant_text: { field: 'content', filter_duplicate_text: true } } } } } } ) puts response
GET news/_search { "query": { "match": { "content": "elasticsearch" } }, "aggs": { "sample": { "sampler": { "shard_size": 100 }, "aggs": { "keywords": { "significant_text": { "field": "content", "filter_duplicate_text": true } } } } } }
The results from analysing our deduplicated text are obviously of higher quality to anyone familiar with the elastic stack:
{ ... "aggregations": { "sample": { "doc_count": 35, "keywords": { "doc_count": 35, "buckets": [ { "key": "elasticsearch", "doc_count": 22, "score": 11288.001166180758, "bg_count": 35 }, { "key": "logstash", "doc_count": 3, "score": 1836.648979591837, "bg_count": 4 }, { "key": "kibana", "doc_count": 3, "score": 1469.3020408163263, "bg_count": 5 } ] } } } }
Mr Pozmantier and other one-off associations with elasticsearch no longer appear in the aggregation results as a consequence of copy-and-paste operations or other forms of mechanical repetition.
If your duplicate or near-duplicate content is identifiable via a single-value indexed field (perhaps
a hash of the article’s title
text or an original_press_release_url
field) then it would be more
efficient to use a parent diversified sampler aggregation
to eliminate these documents from the sample set based on that single key. The less duplicate content you can feed into
the significant_text aggregation up front the better in terms of performance.
Limitations
editNo support for child aggregations
editThe significant_text aggregation intentionally does not support the addition of child aggregations because:
- It would come with a high memory cost
- It isn’t a generally useful feature and there is a workaround for those that need it
The volume of candidate terms is generally very high and these are pruned heavily before the final
results are returned. Supporting child aggregations would generate additional churn and be inefficient.
Clients can always take the heavily-trimmed set of results from a significant_text
request and
make a subsequent follow-up query using a terms
aggregation with an include
clause and child
aggregations to perform further analysis of selected keywords in a more efficient fashion.
No support for nested objects
editThe significant_text aggregation currently also cannot be used with text fields in nested objects, because it works with the document JSON source. This makes this feature inefficient when matching nested docs from stored JSON given a matching Lucene docID.
Approximate counts
editThe counts of how many documents contain a term provided in results are based on summing the samples returned from each shard and as such may be:
- low if certain shards did not provide figures for a given term in their top sample
- high when considering the background frequency as it may count occurrences found in deleted documents
Like most design decisions, this is the basis of a trade-off in which we have chosen to provide fast performance at the cost of some (typically small) inaccuracies.
However, the size
and shard size
settings covered in the next section provide tools to help control the accuracy levels.
Parameters
editSignificance heuristics
editThis aggregation supports the same scoring heuristics (JLH, mutual_information, gnd, chi_square etc) as the significant terms aggregation
Size & Shard Size
editThe size
parameter can be set to define how many term buckets should be returned out of the overall terms list. By
default, the node coordinating the search process will request each shard to provide its own top term buckets
and once all shards respond, it will reduce the results to the final list that will then be returned to the client.
If the number of unique terms is greater than size
, the returned list can be slightly off and not accurate
(it could be that the term counts are slightly off and it could even be that a term that should have been in the top
size buckets was not returned).
To ensure better accuracy a multiple of the final size
is used as the number of terms to request from each shard
(2 * (size * 1.5 + 10)
). To take manual control of this setting the shard_size
parameter
can be used to control the volumes of candidate terms produced by each shard.
Low-frequency terms can turn out to be the most interesting ones once all results are combined so the
significant_terms aggregation can produce higher-quality results when the shard_size
parameter is set to
values significantly higher than the size
setting. This ensures that a bigger volume of promising candidate terms are given
a consolidated review by the reducing node before the final selection. Obviously large candidate term lists
will cause extra network traffic and RAM usage so this is quality/cost trade off that needs to be balanced. If shard_size
is set to -1 (the default) then shard_size
will be automatically estimated based on the number of shards and the size
parameter.
shard_size
cannot be smaller than size
(as it doesn’t make much sense). When it is, elasticsearch will
override it and reset it to be equal to size
.
Minimum document count
editIt is possible to only return terms that match more than a configured number of hits using the min_doc_count
option.
The Default value is 3.
Terms that score highly will be collected on a shard level and merged with the terms collected from other shards in a second step.
However, the shard does not have the information about the global term frequencies available. The decision if a term is added to a
candidate list depends only on the score computed on the shard using local shard frequencies, not the global frequencies of the word.
The min_doc_count
criterion is only applied after merging local terms statistics of all shards. In a way the decision to add the
term as a candidate is made without being very certain about if the term will actually reach the required min_doc_count
.
This might cause many (globally) high frequent terms to be missing in the final result if low frequent but high scoring terms populated
the candidate lists. To avoid this, the shard_size
parameter can be increased to allow more candidate terms on the shards.
However, this increases memory consumption and network traffic.
shard_min_doc_count
editThe parameter shard_min_doc_count
regulates the certainty a shard has if the term should actually be added to the candidate list or not with respect to the min_doc_count
. Terms will only be considered if their local shard frequency within the set is higher than the shard_min_doc_count
. If your dictionary contains many low frequent terms and you are not interested in those (for example misspellings), then you can set the shard_min_doc_count
parameter to filter out candidate terms on a shard level that will with a reasonable certainty not reach the required min_doc_count
even after merging the local counts. shard_min_doc_count
is set to 0
per default and has no effect unless you explicitly set it.
Setting min_doc_count
to 1
is generally not advised as it tends to return terms that
are typos or other bizarre curiosities. Finding more than one instance of a term helps
reinforce that, while still rare, the term was not the result of a one-off accident. The
default value of 3 is used to provide a minimum weight-of-evidence.
Setting shard_min_doc_count
too high will cause significant candidate terms to be filtered out on a shard level.
This value should be set much lower than min_doc_count/#shards
.
Custom background context
editThe default source of statistical information for background term frequencies is the entire index and this
scope can be narrowed through the use of a background_filter
to focus in on significant terms within a narrower
context:
response = client.search( index: 'news', body: { query: { match: { content: 'madrid' } }, aggregations: { tags: { significant_text: { field: 'content', background_filter: { term: { content: 'spain' } } } } } } ) puts response
GET news/_search { "query": { "match": { "content": "madrid" } }, "aggs": { "tags": { "significant_text": { "field": "content", "background_filter": { "term": { "content": "spain" } } } } } }
The above filter would help focus in on terms that were peculiar to the city of Madrid rather than revealing terms like "Spanish" that are unusual in the full index’s worldwide context but commonplace in the subset of documents containing the word "Spain".
Use of background filters will slow the query as each term’s postings must be filtered to determine a frequency
Dealing with source and index mappings
editOrdinarily the indexed field name and the original JSON field being retrieved share the same name.
However with more complex field mappings using features like copy_to
the source
JSON field(s) and the indexed field being aggregated can differ.
In these cases it is possible to list the JSON _source fields from which text
will be analyzed using the source_fields
parameter:
response = client.search( index: 'news', body: { query: { match: { custom_all: 'elasticsearch' } }, aggregations: { tags: { significant_text: { field: 'custom_all', source_fields: [ 'content', 'title' ] } } } } ) puts response
GET news/_search { "query": { "match": { "custom_all": "elasticsearch" } }, "aggs": { "tags": { "significant_text": { "field": "custom_all", "source_fields": [ "content", "title" ] } } } }
Filtering Values
editIt is possible (although rarely required) to filter the values for which buckets will be created. This can be done using the include
and
exclude
parameters which are based on a regular expression string or arrays of exact terms. This functionality mirrors the features
described in the terms aggregation documentation.
On this page
- Basic use
- Dealing with noisy data using
filter_duplicate_text
- Limitations
- No support for child aggregations
- No support for nested objects
- Approximate counts
- Parameters
- Significance heuristics
- Size & Shard Size
- Minimum document count
shard_min_doc_count
- Custom background context
- Dealing with source and index mappings
- Filtering Values