- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.10
- Set up Elasticsearch
- Installing Elasticsearch
- Run Elasticsearch locally
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Health Diagnostic settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Paginate search results
- Retrieve inner hits
- Retrieve selected fields
- Search across clusters
- Search multiple data streams and indices
- Search shard routing
- Search templates
- Search with synonyms
- Sort search results
- kNN search
- Semantic search
- Searching with query rules
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Multiple deployments writing to the same snapshot repository
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Update API key
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Moving function aggregation
editMoving function aggregation
editGiven an ordered series of data, the Moving Function aggregation will slide a window across the data and allow the user to specify a custom script that is executed on each window of data. For convenience, a number of common functions are predefined such as min/max, moving averages, etc.
Syntax
editA moving_fn
aggregation looks like this in isolation:
{ "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "MovingFunctions.min(values)" } }
Table 64. moving_fn
Parameters
Parameter Name | Description | Required | Default Value |
---|---|---|---|
|
Path to the metric of interest (see |
Required |
|
|
The size of window to "slide" across the histogram. |
Required |
|
|
The script that should be executed on each window of data |
Required |
|
|
The policy to apply when gaps are found in the data. See Dealing with gaps in the data. |
Optional |
|
|
Shift of window position. |
Optional |
0 |
moving_fn
aggregations must be embedded inside of a histogram
or date_histogram
aggregation. They can be
embedded like any other metric aggregation:
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_movfn: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'MovingFunctions.unweightedAvg(values)' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_movfn": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "MovingFunctions.unweightedAvg(values)" } } } } } }
A |
|
A |
|
Finally, we specify a |
Moving averages are built by first specifying a histogram
or date_histogram
over a field. You can then optionally
add numeric metrics, such as a sum
, inside of that histogram. Finally, the moving_fn
is embedded inside the histogram.
The buckets_path
parameter is then used to "point" at one of the sibling metrics inside of the histogram (see
buckets_path
Syntax for a description of the syntax for buckets_path
.
An example response from the above aggregation may look like:
{ "took": 11, "timed_out": false, "_shards": ..., "hits": ..., "aggregations": { "my_date_histo": { "buckets": [ { "key_as_string": "2015/01/01 00:00:00", "key": 1420070400000, "doc_count": 3, "the_sum": { "value": 550.0 }, "the_movfn": { "value": null } }, { "key_as_string": "2015/02/01 00:00:00", "key": 1422748800000, "doc_count": 2, "the_sum": { "value": 60.0 }, "the_movfn": { "value": 550.0 } }, { "key_as_string": "2015/03/01 00:00:00", "key": 1425168000000, "doc_count": 2, "the_sum": { "value": 375.0 }, "the_movfn": { "value": 305.0 } } ] } } }
Custom user scripting
editThe Moving Function aggregation allows the user to specify any arbitrary script to define custom logic. The script is invoked each time a
new window of data is collected. These values are provided to the script in the values
variable. The script should then perform some
kind of calculation and emit a single double
as the result. Emitting null
is not permitted, although NaN
and +/- Inf
are allowed.
For example, this script will simply return the first value from the window, or NaN
if no values are available:
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_movavg: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'return values.length > 0 ? values[0] : Double.NaN' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_movavg": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "return values.length > 0 ? values[0] : Double.NaN" } } } } } }
shift parameter
editBy default (with shift = 0
), the window that is offered for calculation is the last n
values excluding the current bucket.
Increasing shift
by 1 moves starting window position by 1
to the right.
-
To include current bucket to the window, use
shift = 1
. -
For center alignment (
n / 2
values before and after the current bucket), useshift = window / 2
. -
For right alignment (
n
values after the current bucket), useshift = window
.
If either of window edges moves outside the borders of data series, the window shrinks to include available values only.
Pre-built Functions
editFor convenience, a number of functions have been prebuilt and are available inside the moving_fn
script context:
-
max()
-
min()
-
sum()
-
stdDev()
-
unweightedAvg()
-
linearWeightedAvg()
-
ewma()
-
holt()
-
holtWinters()
The functions are available from the MovingFunctions
namespace. E.g. MovingFunctions.max()
max Function
editThis function accepts a collection of doubles and returns the maximum value in that window. null
and NaN
values are ignored; the maximum
is only calculated over the real values. If the window is empty, or all values are null
/NaN
, NaN
is returned as the result.
Table 65. max(double[] values)
Parameters
Parameter Name | Description |
---|---|
|
The window of values to find the maximum |
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_moving_max: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'MovingFunctions.max(values)' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_moving_max": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "MovingFunctions.max(values)" } } } } } }
min Function
editThis function accepts a collection of doubles and returns the minimum value in that window. null
and NaN
values are ignored; the minimum
is only calculated over the real values. If the window is empty, or all values are null
/NaN
, NaN
is returned as the result.
Table 66. min(double[] values)
Parameters
Parameter Name | Description |
---|---|
|
The window of values to find the minimum |
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_moving_min: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'MovingFunctions.min(values)' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_moving_min": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "MovingFunctions.min(values)" } } } } } }
sum Function
editThis function accepts a collection of doubles and returns the sum of the values in that window. null
and NaN
values are ignored;
the sum is only calculated over the real values. If the window is empty, or all values are null
/NaN
, 0.0
is returned as the result.
Table 67. sum(double[] values)
Parameters
Parameter Name | Description |
---|---|
|
The window of values to find the sum of |
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_moving_sum: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'MovingFunctions.sum(values)' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_moving_sum": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "MovingFunctions.sum(values)" } } } } } }
stdDev Function
editThis function accepts a collection of doubles and average, then returns the standard deviation of the values in that window.
null
and NaN
values are ignored; the sum is only calculated over the real values. If the window is empty, or all values are
null
/NaN
, 0.0
is returned as the result.
Table 68. stdDev(double[] values)
Parameters
Parameter Name | Description |
---|---|
|
The window of values to find the standard deviation of |
|
The average of the window |
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_moving_sum: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'MovingFunctions.stdDev(values, MovingFunctions.unweightedAvg(values))' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_moving_sum": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "MovingFunctions.stdDev(values, MovingFunctions.unweightedAvg(values))" } } } } } }
The avg
parameter must be provided to the standard deviation function because different styles of averages can be computed on the window
(simple, linearly weighted, etc). The various moving averages that are detailed below can be used to calculate the average for the
standard deviation function.
unweightedAvg Function
editThe unweightedAvg
function calculates the sum of all values in the window, then divides by the size of the window. It is effectively
a simple arithmetic mean of the window. The simple moving average does not perform any time-dependent weighting, which means
the values from a simple
moving average tend to "lag" behind the real data.
null
and NaN
values are ignored; the average is only calculated over the real values. If the window is empty, or all values are
null
/NaN
, NaN
is returned as the result. This means that the count used in the average calculation is count of non-null
,non-NaN
values.
Table 69. unweightedAvg(double[] values)
Parameters
Parameter Name | Description |
---|---|
|
The window of values to find the sum of |
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_movavg: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'MovingFunctions.unweightedAvg(values)' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_movavg": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "MovingFunctions.unweightedAvg(values)" } } } } } }
linearWeightedAvg Function
editThe linearWeightedAvg
function assigns a linear weighting to points in the series, such that "older" datapoints (e.g. those at
the beginning of the window) contribute a linearly less amount to the total average. The linear weighting helps reduce
the "lag" behind the data’s mean, since older points have less influence.
If the window is empty, or all values are null
/NaN
, NaN
is returned as the result.
Table 70. linearWeightedAvg(double[] values)
Parameters
Parameter Name | Description |
---|---|
|
The window of values to find the sum of |
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_movavg: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'MovingFunctions.linearWeightedAvg(values)' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_movavg": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "MovingFunctions.linearWeightedAvg(values)" } } } } } }
ewma Function
editThe ewma
function (aka "single-exponential") is similar to the linearMovAvg
function,
except older data-points become exponentially less important,
rather than linearly less important. The speed at which the importance decays can be controlled with an alpha
setting. Small values make the weight decay slowly, which provides greater smoothing and takes into account a larger
portion of the window. Larger values make the weight decay quickly, which reduces the impact of older values on the
moving average. This tends to make the moving average track the data more closely but with less smoothing.
null
and NaN
values are ignored; the average is only calculated over the real values. If the window is empty, or all values are
null
/NaN
, NaN
is returned as the result. This means that the count used in the average calculation is count of non-null
,non-NaN
values.
Table 71. ewma(double[] values, double alpha)
Parameters
Parameter Name | Description |
---|---|
|
The window of values to find the sum of |
|
Exponential decay |
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_movavg: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'MovingFunctions.ewma(values, 0.3)' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_movavg": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "MovingFunctions.ewma(values, 0.3)" } } } } } }
holt Function
editThe holt
function (aka "double exponential") incorporates a second exponential term which
tracks the data’s trend. Single exponential does not perform well when the data has an underlying linear trend. The
double exponential model calculates two values internally: a "level" and a "trend".
The level calculation is similar to ewma
, and is an exponentially weighted view of the data. The difference is
that the previously smoothed value is used instead of the raw value, which allows it to stay close to the original series.
The trend calculation looks at the difference between the current and last value (e.g. the slope, or trend, of the
smoothed data). The trend value is also exponentially weighted.
Values are produced by multiplying the level and trend components.
null
and NaN
values are ignored; the average is only calculated over the real values. If the window is empty, or all values are
null
/NaN
, NaN
is returned as the result. This means that the count used in the average calculation is count of non-null
,non-NaN
values.
Table 72. holt(double[] values, double alpha)
Parameters
Parameter Name | Description |
---|---|
|
The window of values to find the sum of |
|
Level decay value |
|
Trend decay value |
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_movavg: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'MovingFunctions.holt(values, 0.3, 0.1)' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_movavg": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "MovingFunctions.holt(values, 0.3, 0.1)" } } } } } }
In practice, the alpha
value behaves very similarly in holtMovAvg
as ewmaMovAvg
: small values produce more smoothing
and more lag, while larger values produce closer tracking and less lag. The value of beta
is often difficult
to see. Small values emphasize long-term trends (such as a constant linear trend in the whole series), while larger
values emphasize short-term trends.
holtWinters Function
editThe holtWinters
function (aka "triple exponential") incorporates a third exponential term which
tracks the seasonal aspect of your data. This aggregation therefore smooths based on three components: "level", "trend"
and "seasonality".
The level and trend calculation is identical to holt
The seasonal calculation looks at the difference between
the current point, and the point one period earlier.
Holt-Winters requires a little more handholding than the other moving averages. You need to specify the "periodicity"
of your data: e.g. if your data has cyclic trends every 7 days, you would set period = 7
. Similarly if there was
a monthly trend, you would set it to 30
. There is currently no periodicity detection, although that is planned
for future enhancements.
null
and NaN
values are ignored; the average is only calculated over the real values. If the window is empty, or all values are
null
/NaN
, NaN
is returned as the result. This means that the count used in the average calculation is count of non-null
,non-NaN
values.
Table 73. holtWinters(double[] values, double alpha)
Parameters
Parameter Name | Description |
---|---|
|
The window of values to find the sum of |
|
Level decay value |
|
Trend decay value |
|
Seasonality decay value |
|
The periodicity of the data |
|
True if you wish to use multiplicative holt-winters, false to use additive |
response = client.search( body: { size: 0, aggregations: { my_date_histo: { date_histogram: { field: 'date', calendar_interval: '1M' }, aggregations: { the_sum: { sum: { field: 'price' } }, the_movavg: { moving_fn: { buckets_path: 'the_sum', window: 10, script: 'if (values.length > 5*2) {MovingFunctions.holtWinters(values, 0.3, 0.1, 0.1, 5, false)}' } } } } } } ) puts response
POST /_search { "size": 0, "aggs": { "my_date_histo": { "date_histogram": { "field": "date", "calendar_interval": "1M" }, "aggs": { "the_sum": { "sum": { "field": "price" } }, "the_movavg": { "moving_fn": { "buckets_path": "the_sum", "window": 10, "script": "if (values.length > 5*2) {MovingFunctions.holtWinters(values, 0.3, 0.1, 0.1, 5, false)}" } } } } } }
Multiplicative Holt-Winters works by dividing each data point by the seasonal value. This is problematic if any of
your data is zero, or if there are gaps in the data (since this results in a divid-by-zero). To combat this, the
mult
Holt-Winters pads all values by a very small amount (1*10-10) so that all values are non-zero. This affects
the result, but only minimally. If your data is non-zero, or you prefer to see NaN
when zero’s are encountered,
you can disable this behavior with pad: false
"Cold Start"
editUnfortunately, due to the nature of Holt-Winters, it requires two periods of data to "bootstrap" the algorithm. This
means that your window
must always be at least twice the size of your period. An exception will be thrown if it
isn’t. It also means that Holt-Winters will not emit a value for the first 2 * period
buckets; the current algorithm
does not backcast.
You’ll notice in the above example we have an if ()
statement checking the size of values. This is checking to make sure
we have two periods worth of data (5 * 2
, where 5 is the period specified in the holtWintersMovAvg
function) before calling
the holt-winters function.
On this page