- Elasticsearch Guide: other versions:
- Elasticsearch basics
- Quick starts
- Set up Elasticsearch
- Run Elasticsearch locally
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Data stream lifecycle settings
- Field data cache settings
- Local gateway settings
- Health Diagnostic settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- Inference settings
- License settings
- Machine learning settings
- Monitoring settings
- Node settings
- Networking
- Node query cache settings
- Path settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Set JVM options
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Search your data
- Re-ranking
- Index modules
- Index templates
- Aliases
- Mapping
- Dynamic mapping
- Explicit mapping
- Runtime fields
- Field data types
- Aggregate metric
- Alias
- Arrays
- Binary
- Boolean
- Completion
- Date
- Date nanoseconds
- Dense vector
- Flattened
- Geopoint
- Geoshape
- Histogram
- IP
- Join
- Keyword
- Nested
- Numeric
- Object
- Pass-through object
- Percolator
- Point
- Range
- Rank feature
- Rank features
- Rank Vectors
- Search-as-you-type
- Semantic text
- Shape
- Sparse vector
- Text
- Token count
- Unsigned long
- Version
- Metadata fields
- Mapping parameters
analyzer
coerce
copy_to
doc_values
dynamic
eager_global_ordinals
enabled
format
ignore_above
index.mapping.ignore_above
ignore_malformed
index
index_options
index_phrases
index_prefixes
meta
fields
normalizer
norms
null_value
position_increment_gap
properties
search_analyzer
similarity
store
subobjects
term_vector
- Mapping limit settings
- Removal of mapping types
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- IP Location
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Terminate
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Ingest pipelines in Search
- Connectors
- Data streams
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Roll up or transform your data
- Query DSL
- EQL
- ES|QL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- Watcher
- Monitor a cluster
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Set up a cluster for high availability
- Optimizations
- Autoscaling
- Snapshot and restore
- Cross-cluster replication
- Data store architecture
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Connector APIs
- Create connector
- Delete connector
- Get connector
- List connectors
- Update connector API key id
- Update connector configuration
- Update connector index name
- Update connector features
- Update connector filtering
- Update connector name and description
- Update connector pipeline
- Update connector scheduling
- Update connector service type
- Create connector sync job
- Cancel connector sync job
- Delete connector sync job
- Get connector sync job
- List connector sync jobs
- Check in a connector
- Update connector error
- Update connector last sync stats
- Update connector status
- Check in connector sync job
- Claim connector sync job
- Set connector sync job error
- Set connector sync job stats
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- ES|QL APIs
- Features APIs
- Fleet APIs
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Resolve cluster
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Inference APIs
- Delete inference API
- Get inference API
- Perform inference API
- Chat completion inference API
- Create inference API
- Stream inference API
- Update inference API
- AlibabaCloud AI Search inference service
- Amazon Bedrock inference service
- Anthropic inference service
- Azure AI studio inference service
- Azure OpenAI inference service
- Cohere inference service
- Elasticsearch inference service
- ELSER inference service
- Google AI Studio inference service
- Google Vertex AI inference service
- HuggingFace inference service
- JinaAI inference service
- Mistral inference service
- OpenAI inference service
- Watsonx inference service
- Info API
- Ingest APIs
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Root API
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Bulk create or update roles API
- Bulk delete roles API
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Query Role
- Get service accounts
- Get service account credentials
- Get Security settings
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Query User
- Update API key
- Update Security settings
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Text structure APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Troubleshooting broken repositories
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- Troubleshooting an unbalanced cluster
- Capture diagnostics
- Upgrade Elasticsearch
- Migration guide
- Release notes
- Dependencies and versions
Match query
editMatch query
editReturns documents that match a provided text, number, date or boolean value. The provided text is analyzed before matching.
The match
query is the standard query for performing a full-text search,
including options for fuzzy matching.
Match
will also work against semantic_text fields,
however when performing match
queries against semantic_text
fields options
that specifically target lexical search such as fuzziness
or analyzer
will be ignored.
Example request
editresp = client.search( query={ "match": { "message": { "query": "this is a test" } } }, ) print(resp)
response = client.search( body: { query: { match: { message: { query: 'this is a test' } } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "match": { "message": { "query": "this is a test" } } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ query: { match: { message: { query: "this is a test", }, }, }, }); console.log(response);
GET /_search { "query": { "match": { "message": { "query": "this is a test" } } } }
Top-level parameters for match
edit-
<field>
- (Required, object) Field you wish to search.
Parameters for <field>
edit-
query
-
(Required) Text, number, boolean value or date you wish to find in the provided
<field>
.The
match
query analyzes any provided text before performing a search. This means thematch
query can searchtext
fields for analyzed tokens rather than an exact term. -
analyzer
-
(Optional, string) Analyzer used to convert the text in the
query
value into tokens. Defaults to the index-time analyzer mapped for the<field>
. If no analyzer is mapped, the index’s default analyzer is used. -
auto_generate_synonyms_phrase_query
-
(Optional, Boolean) If
true
, match phrase queries are automatically created for multi-term synonyms. Defaults totrue
.See Use synonyms with match query for an example.
-
boost
-
(Optional, float) Floating point number used to decrease or increase the relevance scores of the query. Defaults to
1.0
.Boost values are relative to the default value of
1.0
. A boost value between0
and1.0
decreases the relevance score. A value greater than1.0
increases the relevance score. -
fuzziness
- (Optional, string) Maximum edit distance allowed for matching. See Fuzziness for valid values and more information. See Fuzziness in the match query for an example.
-
max_expansions
-
(Optional, integer) Maximum number of terms to which the query will
expand. Defaults to
50
. -
prefix_length
-
(Optional, integer) Number of beginning characters left unchanged for fuzzy
matching. Defaults to
0
. -
fuzzy_transpositions
-
(Optional, Boolean) If
true
, edits for fuzzy matching include transpositions of two adjacent characters (ab → ba). Defaults totrue
. -
fuzzy_rewrite
-
(Optional, string) Method used to rewrite the query. See the
rewrite
parameter for valid values and more information.If the
fuzziness
parameter is not0
, thematch
query uses afuzzy_rewrite
method oftop_terms_blended_freqs_${max_expansions}
by default. -
lenient
-
(Optional, Boolean) If
true
, format-based errors, such as providing a textquery
value for a numeric field, are ignored. Defaults tofalse
. -
operator
-
(Optional, string) Boolean logic used to interpret text in the
query
value. Valid values are:-
OR
(Default) -
For example, a
query
value ofcapital of Hungary
is interpreted ascapital OR of OR Hungary
. -
AND
-
For example, a
query
value ofcapital of Hungary
is interpreted ascapital AND of AND Hungary
.
-
-
minimum_should_match
-
(Optional, string) Minimum number of clauses that must match for a document to be returned. See the
minimum_should_match
parameter for valid values and more information. -
zero_terms_query
-
(Optional, string) Indicates whether no documents are returned if the
analyzer
removes all tokens, such as when using astop
filter. Valid values are:-
none
(Default) -
No documents are returned if the
analyzer
removes all tokens. -
all
-
Returns all documents, similar to a
match_all
query.
See Zero terms query for an example.
-
Notes
editShort request example
editYou can simplify the match query syntax by combining the <field>
and query
parameters. For example:
resp = client.search( query={ "match": { "message": "this is a test" } }, ) print(resp)
response = client.search( body: { query: { match: { message: 'this is a test' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "match": { "message": "this is a test" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ query: { match: { message: "this is a test", }, }, }); console.log(response);
GET /_search { "query": { "match": { "message": "this is a test" } } }
How the match query works
editThe match
query is of type boolean
. It means that the text
provided is analyzed and the analysis process constructs a boolean query
from the provided text. The operator
parameter can be set to or
or and
to control the boolean clauses (defaults to or
). The minimum number of
optional should
clauses to match can be set using the
minimum_should_match
parameter.
Here is an example with the operator
parameter:
resp = client.search( query={ "match": { "message": { "query": "this is a test", "operator": "and" } } }, ) print(resp)
response = client.search( body: { query: { match: { message: { query: 'this is a test', operator: 'and' } } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "match": { "message": { "query": "this is a test", "operator": "and" } } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ query: { match: { message: { query: "this is a test", operator: "and", }, }, }, }); console.log(response);
GET /_search { "query": { "match": { "message": { "query": "this is a test", "operator": "and" } } } }
The analyzer
can be set to control which analyzer will perform the
analysis process on the text. It defaults to the field explicit mapping
definition, or the default search analyzer.
The lenient
parameter can be set to true
to ignore exceptions caused by
data-type mismatches, such as trying to query a numeric field with a text
query string. Defaults to false
.
Fuzziness in the match query
editfuzziness
allows fuzzy matching based on the type of field being queried.
See Fuzziness for allowed settings.
The prefix_length
and
max_expansions
can be set in this case to control the fuzzy process.
If the fuzzy option is set the query will use top_terms_blended_freqs_${max_expansions}
as its rewrite
method the fuzzy_rewrite
parameter allows to control how the query will get
rewritten.
Fuzzy transpositions (ab
→ ba
) are allowed by default but can be disabled
by setting fuzzy_transpositions
to false
.
Fuzzy matching is not applied to terms with synonyms or in cases where the analysis process produces multiple tokens at the same position. Under the hood these terms are expanded to a special synonym query that blends term frequencies, which does not support fuzzy expansion.
resp = client.search( query={ "match": { "message": { "query": "this is a testt", "fuzziness": "AUTO" } } }, ) print(resp)
response = client.search( body: { query: { match: { message: { query: 'this is a testt', fuzziness: 'AUTO' } } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "match": { "message": { "query": "this is a testt", "fuzziness": "AUTO" } } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ query: { match: { message: { query: "this is a testt", fuzziness: "AUTO", }, }, }, }); console.log(response);
GET /_search { "query": { "match": { "message": { "query": "this is a testt", "fuzziness": "AUTO" } } } }
Zero terms query
editIf the analyzer used removes all tokens in a query like a stop
filter
does, the default behavior is to match no documents at all. In order to
change that the zero_terms_query
option can be used, which accepts
none
(default) and all
which corresponds to a match_all
query.
resp = client.search( query={ "match": { "message": { "query": "to be or not to be", "operator": "and", "zero_terms_query": "all" } } }, ) print(resp)
response = client.search( body: { query: { match: { message: { query: 'to be or not to be', operator: 'and', zero_terms_query: 'all' } } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "match": { "message": { "query": "to be or not to be", "operator": "and", "zero_terms_query": "all" } } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ query: { match: { message: { query: "to be or not to be", operator: "and", zero_terms_query: "all", }, }, }, }); console.log(response);
GET /_search { "query": { "match": { "message": { "query": "to be or not to be", "operator": "and", "zero_terms_query": "all" } } } }
Synonyms
editThe match
query supports multi-terms synonym expansion with the synonym_graph token filter. When this filter is used, the parser creates a phrase query for each multi-terms synonyms.
For example, the following synonym: "ny, new york"
would produce:
(ny OR ("new york"))
It is also possible to match multi terms synonyms with conjunctions instead:
$params = [ 'body' => [ 'query' => [ 'match' => [ 'message' => [ 'query' => 'ny city', 'auto_generate_synonyms_phrase_query' => false, ], ], ], ], ]; $response = $client->search($params);
resp = client.search( query={ "match": { "message": { "query": "ny city", "auto_generate_synonyms_phrase_query": False } } }, ) print(resp)
response = client.search( body: { query: { match: { message: { query: 'ny city', auto_generate_synonyms_phrase_query: false } } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "match": { "message": { "query": "ny city", "auto_generate_synonyms_phrase_query": false } } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ query: { match: { message: { query: "ny city", auto_generate_synonyms_phrase_query: false, }, }, }, }); console.log(response);
GET /_search { "query": { "match" : { "message": { "query" : "ny city", "auto_generate_synonyms_phrase_query" : false } } } }
The example above creates a boolean query:
(ny OR (new AND york)) city
that matches documents with the term ny
or the conjunction new AND york
.
By default the parameter auto_generate_synonyms_phrase_query
is set to true
.
On this page
ElasticON events are back!
Learn about the Elastic Search AI Platform from the experts at our live events.
Register now