- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.10
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest node
- Search your data
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geotile grid
- Global
- Histogram
- IP range
- Missing
- Nested
- Parent
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Bucket aggregations
- EQL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Overview
- Concepts
- Automate rollover
- Manage Filebeat time-based indices
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Resolve lifecycle policy execution errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Granting access to Stack Management features
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and index aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watch for cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- Graph explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete component template
- Delete index template
- Delete index template (legacy)
- Flush
- Force merge
- Freeze index
- Get component template
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- Open index
- Put index template
- Put index template (legacy)
- Put component template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Simulate index
- Simulate template
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Resolve index
- List dangling indices
- Import dangling index
- Delete dangling index
- Index lifecycle management APIs
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create trained models
- Update data frame analytics jobs
- Delete data frame analytics jobs
- Delete trained models
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get trained models
- Get trained models stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 7.10.2
- Elasticsearch version 7.10.1
- Elasticsearch version 7.10.0
- Elasticsearch version 7.9.3
- Elasticsearch version 7.9.2
- Elasticsearch version 7.9.1
- Elasticsearch version 7.9.0
- Elasticsearch version 7.8.1
- Elasticsearch version 7.8.0
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
- Dependencies and versions
Dynamic templates
editDynamic templates
editDynamic templates allow you to define custom mappings that can be applied to dynamically added fields based on:
-
the data type detected by Elasticsearch, with
match_mapping_type
. -
the name of the field, with
match
andunmatch
ormatch_pattern
. -
the full dotted path to the field, with
path_match
andpath_unmatch
.
The original field name {name}
and the detected data type
{dynamic_type}
template variables can be used in
the mapping specification as placeholders.
Dynamic field mappings are only added when a field contains a
concrete value — not null
or an empty array. This means that if the
null_value
option is used in a dynamic_template
, it will only be applied
after the first document with a concrete value for the field has been
indexed.
Dynamic templates are specified as an array of named objects:
"dynamic_templates": [ { "my_template_name": { ... match conditions ... "mapping": { ... } } }, ... ]
The template name can be any string value. |
|
The match conditions can include any of : |
|
The mapping that the matched field should use. |
If a provided mapping contains an invalid mapping snippet, a validation error is returned. Validation occurs when applying the dynamic template at index time, and, in most cases, when the dynamic template is updated. Providing an invalid mapping snippet may cause the update or validation of a dynamic template to fail under certain conditions:
-
If no
match_mapping_type
has been specified but the template is valid for at least one predefined mapping type, the mapping snippet is considered valid. However, a validation error is returned at index time if a field matching the template is indexed as a different type. For example, configuring a dynamic template with nomatch_mapping_type
is considered valid as string type, but if a field matching the dynamic template is indexed as a long, a validation error is returned at index time. -
If the
{name}
placeholder is used in the mapping snippet, validation is skipped when updating the dynamic template. This is because the field name is unknown at that time. Instead, validation occurs when the template is applied at index time.
Templates are processed in order — the first matching template wins. When putting new dynamic templates through the put mapping API, all existing templates are overwritten. This allows for dynamic templates to be reordered or deleted after they were initially added.
match_mapping_type
editThe match_mapping_type
is the data type detected by the JSON parser. Since
JSON doesn’t distinguish a long
from an integer
or a double
from
a float
, it will always choose the wider data type, i.e. long
for integers
and double
for floating-point numbers.
The following data types may be automatically detected:
-
boolean
whentrue
orfalse
are encountered. -
date
when date detection is enabled and a string matching any of the configured date formats is found. -
double
for numbers with a decimal part. -
long
for numbers without a decimal part. -
object
for objects, also called hashes. -
string
for character strings.
*
may also be used in order to match all data types.
For example, if we wanted to map all integer fields as integer
instead of
long
, and all string
fields as both text
and keyword
, we
could use the following template:
PUT my-index-000001 { "mappings": { "dynamic_templates": [ { "integers": { "match_mapping_type": "long", "mapping": { "type": "integer" } } }, { "strings": { "match_mapping_type": "string", "mapping": { "type": "text", "fields": { "raw": { "type": "keyword", "ignore_above": 256 } } } } } ] } } PUT my-index-000001/_doc/1 { "my_integer": 5, "my_string": "Some string" }
The |
|
The |
match
and unmatch
editThe match
parameter uses a pattern to match on the field name, while
unmatch
uses a pattern to exclude fields matched by match
.
The following example matches all string
fields whose name starts with
long_
(except for those which end with _text
) and maps them as long
fields:
match_pattern
editThe match_pattern
parameter adjusts the behavior of the match
parameter
such that it supports full Java regular expression matching on the field name
instead of simple wildcards, for instance:
"match_pattern": "regex", "match": "^profit_\d+$"
path_match
and path_unmatch
editThe path_match
and path_unmatch
parameters work in the same way as match
and unmatch
, but operate on the full dotted path to the field, not just the
final name, e.g. some_object.*.some_field
.
This example copies the values of any fields in the name
object to the
top-level full_name
field, except for the middle
field:
PUT my-index-000001 { "mappings": { "dynamic_templates": [ { "full_name": { "path_match": "name.*", "path_unmatch": "*.middle", "mapping": { "type": "text", "copy_to": "full_name" } } } ] } } PUT my-index-000001/_doc/1 { "name": { "first": "John", "middle": "Winston", "last": "Lennon" } }
Note that the path_match
and path_unmatch
parameters match on object paths
in addition to leaf fields. As an example, indexing the following document will
result in an error because the path_match
setting also matches the object
field name.title
, which can’t be mapped as text:
PUT my-index-000001/_doc/2 { "name": { "first": "Paul", "last": "McCartney", "title": { "value": "Sir", "category": "order of chivalry" } } }
{name}
and {dynamic_type}
editThe {name}
and {dynamic_type}
placeholders are replaced in the mapping
with the field name and detected dynamic type. The following example sets all
string fields to use an analyzer
with the same name as the
field, and disables doc_values
for all non-string fields:
PUT my-index-000001 { "mappings": { "dynamic_templates": [ { "named_analyzers": { "match_mapping_type": "string", "match": "*", "mapping": { "type": "text", "analyzer": "{name}" } } }, { "no_doc_values": { "match_mapping_type":"*", "mapping": { "type": "{dynamic_type}", "doc_values": false } } } ] } } PUT my-index-000001/_doc/1 { "english": "Some English text", "count": 5 }
Template examples
editHere are some examples of potentially useful dynamic templates:
Structured search
editBy default Elasticsearch will map string fields as a text
field with a sub
keyword
field. However if you are only indexing structured content and not
interested in full text search, you can make Elasticsearch map your fields
only as `keyword`s. Note that this means that in order to search those fields,
you will have to search on the exact same value that was indexed.
PUT my-index-000001 { "mappings": { "dynamic_templates": [ { "strings_as_keywords": { "match_mapping_type": "string", "mapping": { "type": "keyword" } } } ] } }
text
-only mappings for strings
editOn the contrary to the previous example, if the only thing that you care about on your string fields is full-text search, and if you don’t plan on running aggregations, sorting or exact search on your string fields, you could tell Elasticsearch to map it only as a text field (which was the default behaviour before 5.0):
PUT my-index-000001 { "mappings": { "dynamic_templates": [ { "strings_as_text": { "match_mapping_type": "string", "mapping": { "type": "text" } } } ] } }
Disabled norms
editNorms are index-time scoring factors. If you do not care about scoring, which would be the case for instance if you never sort documents by score, you could disable the storage of these scoring factors in the index and save some space.
PUT my-index-000001 { "mappings": { "dynamic_templates": [ { "strings_as_keywords": { "match_mapping_type": "string", "mapping": { "type": "text", "norms": false, "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } } } } ] } }
The sub keyword
field appears in this template to be consistent with the
default rules of dynamic mappings. Of course if you do not need them because
you don’t need to perform exact search or aggregate on this field, you could
remove it as described in the previous section.
Time series
editWhen doing time series analysis with Elasticsearch, it is common to have many numeric fields that you will often aggregate on but never filter on. In such a case, you could disable indexing on those fields to save disk space and also maybe gain some indexing speed:
On this page