- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.10
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest node
- Search your data
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geotile grid
- Global
- Histogram
- IP range
- Missing
- Nested
- Parent
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Bucket aggregations
- EQL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Overview
- Concepts
- Automate rollover
- Manage Filebeat time-based indices
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Resolve lifecycle policy execution errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Granting access to Stack Management features
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and index aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watch for cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- Graph explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete component template
- Delete index template
- Delete index template (legacy)
- Flush
- Force merge
- Freeze index
- Get component template
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- Open index
- Put index template
- Put index template (legacy)
- Put component template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Simulate index
- Simulate template
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Resolve index
- List dangling indices
- Import dangling index
- Delete dangling index
- Index lifecycle management APIs
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create trained models
- Update data frame analytics jobs
- Delete data frame analytics jobs
- Delete trained models
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get trained models
- Get trained models stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 7.10.2
- Elasticsearch version 7.10.1
- Elasticsearch version 7.10.0
- Elasticsearch version 7.9.3
- Elasticsearch version 7.9.2
- Elasticsearch version 7.9.1
- Elasticsearch version 7.9.0
- Elasticsearch version 7.8.1
- Elasticsearch version 7.8.0
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
- Dependencies and versions
Retrieve selected fields from a search
editRetrieve selected fields from a search
editBy default, each hit in the search response includes the document
_source
, which is the entire JSON object that was
provided when indexing the document. To retrieve specific fields in the search
response, you can use the fields
parameter:
POST my-index-000001/_search { "query": { "match": { "message": "foo" } }, "fields": ["user.id", "@timestamp"], "_source": false }
The fields
parameter consults both a document’s _source
and the index
mappings to load and return values. Because it makes use of the mappings,
fields
has some advantages over referencing the _source
directly: it
accepts multi-fields and field aliases, and
also formats field values like dates in a consistent way.
A document’s _source
is stored as a single field in Lucene. So the whole
_source
object must be loaded and parsed even if only a small number of
fields are requested. To avoid this limitation, you can try another option for
loading fields:
-
Use the
docvalue_fields
parameter to get values for selected fields. This can be a good choice when returning a fairly small number of fields that support doc values, such as keywords and dates. -
Use the
stored_fields
parameter to get the values for specific stored fields (fields that use thestore
mapping option).
If needed, you can use the script_field
parameter to
transform field values in the response using a script. However, scripts can’t
make use of Elasticsearch’s index structures or related optimizations. This can sometimes
result in slower search speeds.
You can find more detailed information on each of these methods in the following sections:
Fields
editThis functionality is in beta and is subject to change. The design and code is less mature than official GA features and is being provided as-is with no warranties. Beta features are not subject to the support SLA of official GA features.
The fields
parameter allows for retrieving a list of document fields in
the search response. It consults both the document _source
and the index
mappings to return each value in a standardized way that matches its mapping
type. By default, date fields are formatted according to the
date format parameter in their mappings.
The following search request uses the fields
parameter to retrieve values
for the user.id
field, all fields starting with http.response.
, and the
@timestamp
field:
POST my-index-000001/_search { "query": { "match": { "user.id": "kimchy" } }, "fields": [ "user.id", "http.response.*", { "field": "@timestamp", "format": "epoch_millis" } ], "_source": false }
Both full field names and wildcard patterns are accepted. |
|
Using object notation, you can pass a |
The values are returned as a flat list in the fields
section in each hit:
{ "took" : 2, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my-index-000001", "_id" : "0", "_score" : 1.0, "_type" : "_doc", "fields" : { "user.id" : [ "kimchy" ], "@timestamp" : [ "4098435132000" ], "http.response.bytes": [ 1070000 ], "http.response.status_code": [ 200 ] } } ] } }
Only leaf fields are returned — fields
does not allow for fetching entire
objects.
The fields
parameter handles field types like field aliases and
constant_keyword
whose values aren’t always present in
the _source
. Other mapping options are also respected, including
ignore_above
, ignore_malformed
and
null_value
.
The fields
response always returns an array of values for each field,
even when there is a single value in the _source
. This is because Elasticsearch has
no dedicated array type, and any field could contain multiple values. The
fields
parameter also does not guarantee that array values are returned in
a specific order. See the mapping documentation on arrays for more
background.
Doc value fields
editYou can use the docvalue_fields
parameter to return
doc values for one or more fields in the search response.
Doc values store the same values as the _source
but in an on-disk,
column-based structure that’s optimized for sorting and aggregations. Since each
field is stored separately, Elasticsearch only reads the field values that were requested
and can avoid loading the whole document _source
.
Doc values are stored for supported fields by default. However, doc values are
not supported for text
or
text_annotated
fields.
The following search request uses the docvalue_fields
parameter to retrieve
doc values for the user.id
field, all fields starting with http.response.
, and the
@timestamp
field:
GET my-index-000001/_search { "query": { "match": { "user.id": "kimchy" } }, "docvalue_fields": [ "user.id", "http.response.*", { "field": "date", "format": "epoch_millis" } ] }
Both full field names and wildcard patterns are accepted. |
|
Using object notation, you can pass a |
You cannot use the docvalue_fields
parameter to retrieve doc values for
nested objects. If you specify a nested object, the search returns an empty
array ([ ]
) for the field. To access nested fields, use the
inner_hits
parameter’s docvalue_fields
property.
Stored fields
editIt’s also possible to store an individual field’s values by using the
store
mapping option. You can use the
stored_fields
parameter to include these stored values in the search response.
The stored_fields
parameter is for fields that are explicitly marked as
stored in the mapping, which is off by default and generally not recommended.
Use source filtering instead to select
subsets of the original source document to be returned.
Allows to selectively load specific stored fields for each document represented by a search hit.
GET /_search { "stored_fields" : ["user", "postDate"], "query" : { "term" : { "user" : "kimchy" } } }
*
can be used to load all stored fields from the document.
An empty array will cause only the _id
and _type
for each hit to be
returned, for example:
GET /_search { "stored_fields" : [], "query" : { "term" : { "user" : "kimchy" } } }
If the requested fields are not stored (store
mapping set to false
), they will be ignored.
Stored field values fetched from the document itself are always returned as an array. On the contrary, metadata fields like _routing
are never returned as an array.
Also only leaf fields can be returned via the stored_fields
option. If an object field is specified, it will be ignored.
On its own, stored_fields
cannot be used to load fields in nested
objects — if a field contains a nested object in its path, then no data will
be returned for that stored field. To access nested fields, stored_fields
must be used within an inner_hits
block.
Disable stored fields
editTo disable the stored fields (and metadata fields) entirely use: _none_
:
GET /_search { "stored_fields": "_none_", "query" : { "term" : { "user" : "kimchy" } } }
Source filtering
editYou can use the _source
parameter to select what fields of the source are
returned. This is called source filtering.
The following search API request sets the _source
request body parameter to
false
. The document source is not included in the response.
GET /_search { "_source": false, "query": { "match": { "user.id": "kimchy" } } }
To return only a subset of source fields, specify a wildcard (*
) pattern in
the _source
parameter. The following search API request returns the source for
only the obj
field and its properties.
GET /_search { "_source": "obj.*", "query": { "match": { "user.id": "kimchy" } } }
You can also specify an array of wildcard patterns in the _source
field. The
following search API request returns the source for only the obj1
and
obj2
fields and their properties.
GET /_search { "_source": [ "obj1.*", "obj2.*" ], "query": { "match": { "user.id": "kimchy" } } }
For finer control, you can specify an object containing arrays of includes
and
excludes
patterns in the _source
parameter.
If the includes
property is specified, only source fields that match one of
its patterns are returned. You can exclude fields from this subset using the
excludes
property.
If the includes
property is not specified, the entire document source is
returned, excluding any fields that match a pattern in the excludes
property.
The following search API request returns the source for only the obj1
and
obj2
fields and their properties, excluding any child description
fields.
GET /_search { "_source": { "includes": [ "obj1.*", "obj2.*" ], "excludes": [ "*.description" ] }, "query": { "term": { "user.id": "kimchy" } } }
Script fields
editYou can use the script_fields
parameter to retrieve a script
evaluation (based on different fields) for each hit. For example:
GET /_search { "query": { "match_all": {} }, "script_fields": { "test1": { "script": { "lang": "painless", "source": "doc['price'].value * 2" } }, "test2": { "script": { "lang": "painless", "source": "doc['price'].value * params.factor", "params": { "factor": 2.0 } } } } }
Script fields can work on fields that are not stored (price
in
the above case), and allow to return custom values to be returned (the
evaluated value of the script).
Script fields can also access the actual _source
document and
extract specific elements to be returned from it by using params['_source']
.
Here is an example:
GET /_search { "query" : { "match_all": {} }, "script_fields" : { "test1" : { "script" : "params['_source']['message']" } } }
Note the _source
keyword here to navigate the json-like model.
It’s important to understand the difference between
doc['my_field'].value
and params['_source']['my_field']
. The first,
using the doc keyword, will cause the terms for that field to be loaded to
memory (cached), which will result in faster execution, but more memory
consumption. Also, the doc[...]
notation only allows for simple valued
fields (you can’t return a json object from it) and makes sense only for
non-analyzed or single term based fields. However, using doc
is
still the recommended way to access values from the document, if at all
possible, because _source
must be loaded and parsed every time it’s used.
Using _source
is very slow.