- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.10
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest node
- Search your data
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geotile grid
- Global
- Histogram
- IP range
- Missing
- Nested
- Parent
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Bucket aggregations
- EQL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Overview
- Concepts
- Automate rollover
- Manage Filebeat time-based indices
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Resolve lifecycle policy execution errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Granting access to Stack Management features
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and index aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watch for cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- Graph explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete component template
- Delete index template
- Delete index template (legacy)
- Flush
- Force merge
- Freeze index
- Get component template
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- Open index
- Put index template
- Put index template (legacy)
- Put component template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Simulate index
- Simulate template
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Resolve index
- List dangling indices
- Import dangling index
- Delete dangling index
- Index lifecycle management APIs
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create trained models
- Update data frame analytics jobs
- Delete data frame analytics jobs
- Delete trained models
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get trained models
- Get trained models stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 7.10.2
- Elasticsearch version 7.10.1
- Elasticsearch version 7.10.0
- Elasticsearch version 7.9.3
- Elasticsearch version 7.9.2
- Elasticsearch version 7.9.1
- Elasticsearch version 7.9.0
- Elasticsearch version 7.8.1
- Elasticsearch version 7.8.0
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
- Dependencies and versions
Working with transforms at scale
editWorking with transforms at scale
editTransforms convert existing Elasticsearch indices into summarized indices, which provide opportunities for new insights and analytics. The search and index operations performed by transforms use standard Elasticsearch features so similar considerations for working with Elasticsearch at scale are often applicable to transforms. If you experience performance issues, start by identifying the bottleneck areas (search, indexing, processing, or storage) then review the relevant considerations in this guide to improve performance. It also helps to understand how transforms work as different considerations apply depending on whether or not your transform is running in continuous mode or in batch.
In this guide, you’ll learn how to:
- Understand the impact of configuration options on the performance of transforms.
Prerequisites:
These guildelines assume you have a transform you want to tune, and you’re already familiar with:
The following considerations are not sequential – the numbers help to navigate between the list items; you can take action on one or more of them in any order. Most of the recommendations apply to both continuous and batch transforms. If a list item only applies to one transform type, this exception is highlighted in the description.
The keywords in parenthesis at the end of each recommendation title indicates the bottleneck area that may be improved by following the given recommendation.
Measure transforms performance
editIn order to optimize transform performance, start by identifying the areas where most work is being done. The Stats interface of the Transforms page in Kibana contains information that covers three main areas: indexing, searching, and processing time (alternatively, you can use the transforms stats API). If, for example, the results show that the highest proportion of time is spent on search, then prioritize efforts on optimizing the search query of the transform. Transforms also has Rally support that makes it possible to run performance checks on transforms configurations if it is required. If you optimized the crucial factors and you still experience performance issues, you may also want to consider improving your hardware.
1. Optimize frequency
(index)
editIn a continuous transform, the frequency
configuration option sets the interval
between checks for changes in the source indices. If changes are detected, then
the source data is searched and the changes are applied to the destination
index. Depending on your use case, you may wish to reduce the frequency at which
changes are applied. By setting frequency
to a higher value (maximum is one
hour), the workload can be spread over time at the cost of less up-to-date data.
2. Increase the number of shards of the destination index (index)
editDepending on the size of the destination index, you may consider increasing its shard count. Transforms use one shard by default when creating the destination index. To override the index settings, create the destination index before starting the transform. For more information about how the number of shards affects scalability and resilience, refer to Scalability and resilience
Use the Preview transform to check the settings that the transform would use to create the destination index. You can copy and adjust these in order to create the destination index prior to starting the transform.
3. Profile and optimize your search queries (search)
editIf you have defined a transform source index query
, ensure it is as
efficient as possible. Use the Search Profiler under Dev Tools in Kibana
to get detailed timing information about the execution of individual components
in the search request. Alternatively, you can use the Profile. The
results give you insight into how search requests are executed at a low level so
that you can understand why certain requests are slow, and take steps to improve
them.
Transforms execute standard Elasticsearch search requests. There are different ways to write Elasticsearch queries, and some of them are more efficient than others. Consult Tune for search speed to learn more about Elasticsearch performance tuning.
4. Limit the scope of the source query (search)
editImagine your continuous transform is configured to group by IP
and calculate the sum
of bytes_sent
. For each checkpoint, a continuous transform detects changes in the
source data since the previous checkpoint, identifying the IPs for which new
data has been ingested. Then it performs a second search, filtered for this
group of IPs, in order to calculate the total bytes_sent
. If this second
search matches many shards, then this could be resource intensive. Consider
limiting the scope that the source index pattern and query will match.
Use an absolute time value as a date range filter in your source query (for
example, greater than 2020-01-01T00:00:00
) to limit which historical indices
are accessed. If you use a relative time value (for example, now-30d
) then
this date range is re-evaluated at the point of each checkpoint execution.
5. Optimize the sharding strategy for the source index (search)
editThere is no one-size-fits-all sharding strategy. A strategy that works in one environment may not scale in another. A good sharding strategy must account for your infrastructure, use case, and performance expectations.
Too few shards may mean that the benefits of distributing the workload cannot be realised; however too many shards may impact your cluster health. To learn more about sizing your shards, read this guide.
6. Tune max_page_search_size
(search)
editThe max_page_search_size
transform configuration option defines the number
of buckets that are returned for each search request. The default value is 500.
If you increase this value, you get better throughput at the cost of higher
latency and memory usage.
The ideal value of this parameter is highly dependent on your use case. If your
transform executes memory-intensive aggregations – for example, cardinality or
percentiles – then increasing max_page_search_size
requires more available
memory. If memory limits are exceeded, a circuit breaker exception occurs.
7. Use indexed fields in your source indices (search)
editScripted fields are not indexed fields; their values are only computed at search time. While these fields provide flexibility in how you access your data, they increase performance costs at search time. If transform performance using scripted fields is a concern, you may wish to consider using indexed fields instead.
8. Use index sorting and group_by
ordering (search, process)
editIf you use more than one group_by
field in your transform, then the order of
the fields in conjunction with the use of Index Sorting may
improve runtime.
Index sorting enables you to store documents on disk in a specific order which
can improve query efficiency. The ideal sorting logic depends on your use case,
but the rule of thumb may be to sort the fields in descending order (high to low
cardinality) starting with the time-based fields. Then put the time-based
components first in the group_by
if you have any, and then apply the same
order to your group_by
fields as configured for index sorting. Index sorting
can be defined only once at index creation. If you don’t already have index
sorting on the index that you want to use as a source, consider reindexing it to
a new, sorted index.
9. Disable the _source
field on the destination index (storage)
editThe _source
field contains the original JSON document body that was
passed at index time. The _source
field itself is not indexed (and thus is not
searchable), but it is still stored in the index and incurs a storage overhead.
Consider disabling _source
to save storage space if you have a large
destination index. Disabling _source
is only possible during index creation.
When the _source
field is disabled, a number of features are not
supported. Consult Disabling the _source
field to understand the consequences
before disabling it.
Further reading
editOn this page
- Measure transforms performance
- 1. Optimize
frequency
(index) - 2. Increase the number of shards of the destination index (index)
- 3. Profile and optimize your search queries (search)
- 4. Limit the scope of the source query (search)
- 5. Optimize the sharding strategy for the source index (search)
- 6. Tune
max_page_search_size
(search) - 7. Use indexed fields in your source indices (search)
- 8. Use index sorting and
group_by
ordering (search, process) - 9. Disable the
_source
field on the destination index (storage) - Further reading