- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Maximum size virtual memory check
- Max file size check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- Stopping Elasticsearch
- Upgrade Elasticsearch
- Set up X-Pack
- Breaking changes
- Breaking changes in 6.0
- Aggregations changes
- Analysis changes
- Cat API changes
- Clients changes
- Cluster changes
- Document API changes
- Indices changes
- Ingest changes
- Java API changes
- Mapping changes
- Packaging changes
- Percolator changes
- Plugins changes
- Reindex changes
- REST changes
- Scripting changes
- Search and Query DSL changes
- Settings changes
- Stats and info changes
- Breaking changes in 6.1
- Breaking changes in 6.0
- X-Pack Breaking Changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- URL Decode Processor
- Monitoring Elasticsearch
- X-Pack APIs
- Info API
- Explore API
- Machine Learning APIs
- Close Jobs
- Create Datafeeds
- Create Jobs
- Delete Datafeeds
- Delete Jobs
- Delete Model Snapshots
- Flush Jobs
- Forecast Jobs
- Get Buckets
- Get Overall Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Security APIs
- Watcher APIs
- Migration APIs
- Deprecation Info APIs
- Definitions
- X-Pack Commands
- How To
- Testing
- Glossary of terms
- Release Notes
- 6.1.4 Release Notes
- 6.1.3 Release Notes
- 6.1.2 Release Notes
- 6.1.1 Release Notes
- 6.1.0 Release Notes
- 6.0.1 Release Notes
- 6.0.0 Release Notes
- 6.0.0-rc2 Release Notes
- 6.0.0-rc1 Release Notes
- 6.0.0-beta2 Release Notes
- 6.0.0-beta1 Release Notes
- 6.0.0-alpha2 Release Notes
- 6.0.0-alpha1 Release Notes
- 6.0.0-alpha1 Release Notes (Changes previously released in 5.x)
- X-Pack Release Notes
WARNING: Version 6.1 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Cluster Reroute
editCluster Reroute
editThe reroute command allows for manual changes to the allocation of individual shards in the cluster. For example, a shard can be moved from one node to another explicitly, an allocation can be cancelled, and an unassigned shard can be explicitly allocated to a specific node.
Here is a short example of a simple reroute API call:
POST /_cluster/reroute { "commands" : [ { "move" : { "index" : "test", "shard" : 0, "from_node" : "node1", "to_node" : "node2" } }, { "allocate_replica" : { "index" : "test", "shard" : 1, "node" : "node3" } } ] }
It is important to note that that after processing any reroute commands
Elasticsearch will perform rebalancing as normal (respecting the values of
settings such as cluster.routing.rebalance.enable
) in order to remain in a
balanced state. For example, if the requested allocation includes moving a
shard from node1
to node2
then this may cause a shard to be moved from
node2
back to node1
to even things out.
The cluster can be set to disable allocations using the
cluster.routing.allocation.enable
setting. If allocations are disabled then
the only allocations that will be performed are explicit ones given using the
reroute
command, and consequent allocations due to rebalancing.
It is possible to run reroute
commands in "dry run" mode by using the
?dry_run
URI query parameter, or by passing "dry_run": true
in the request
body. This will calculate the result of applying the commands to the current
cluster state, and return the resulting cluster state after the commands (and
re-balancing) has been applied, but will not actually perform the requested
changes.
If the ?explain
URI query parameter is included then a detailed explanation
of why the commands could or could not be executed is included in the response.
The commands supported are:
-
move
-
Move a started shard from one node to another node. Accepts
index
andshard
for index name and shard number,from_node
for the node to move the shard from, andto_node
for the node to move the shard to. -
cancel
-
Cancel allocation of a shard (or recovery). Accepts
index
andshard
for index name and shard number, andnode
for the node to cancel the shard allocation on. This can be used to force resynchronization of existing replicas from the primary shard by cancelling them and allowing them to be reinitialized through the standard recovery process. By default only replica shard allocations can be cancelled. If it is necessary to cancel the allocation of a primary shard then theallow_primary
flag must also be included in the request. -
allocate_replica
-
Allocate an unassigned replica shard to a node. Accepts
index
andshard
for index name and shard number, andnode
to allocate the shard to. Takes allocation deciders into account.
Retrying failed allocations
editThe cluster will attempt to allocate a shard a maximum of
index.allocation.max_retries
times in a row (defaults to 5
), before giving
up and leaving the shard unallocated. This scenario can be caused by
structural problems such as having an analyzer which refers to a stopwords
file which doesn’t exist on all nodes.
Once the problem has been corrected, allocation can be manually retried by
calling the reroute
API with the ?retry_failed
URI
query parameter, which will attempt a single retry round for these shards.
Forced allocation on unrecoverable errors
editTwo more commands are available that allow the allocation of a primary shard to a node. These commands should however be used with extreme care, as primary shard allocation is usually fully automatically handled by Elasticsearch. Reasons why a primary shard cannot be automatically allocated include the following:
- A new index was created but there is no node which satisfies the allocation deciders.
- An up-to-date shard copy of the data cannot be found on the current data nodes in the cluster. To prevent data loss, the system does not automatically promote a stale shard copy to primary.
The following two commands are dangerous and may result in data loss. They are
meant to be used in cases where the original data can not be recovered and the
cluster administrator accepts the loss. If you have suffered a temporary issue
that can be fixed, please see the retry_failed
flag described above. To
emphasise: if these commands are performed and then a node joins the cluster
that holds a copy of the affected shard then the copy on the newly-joined node
will be deleted or overwritten.
-
allocate_stale_primary
-
Allocate a primary shard to a node that holds a stale copy. Accepts the
index
andshard
for index name and shard number, andnode
to allocate the shard to. Using this command may lead to data loss for the provided shard id. If a node which has the good copy of the data rejoins the cluster later on, that data will be deleted or overwritten with the data of the stale copy that was forcefully allocated with this command. To ensure that these implications are well-understood, this command requires the flagaccept_data_loss
to be explicitly set totrue
. -
allocate_empty_primary
-
Allocate an empty primary shard to a node. Accepts the
index
andshard
for index name and shard number, andnode
to allocate the shard to. Using this command leads to a complete loss of all data that was indexed into this shard, if it was previously started. If a node which has a copy of the data rejoins the cluster later on, that data will be deleted. To ensure that these implications are well-understood, this command requires the flagaccept_data_loss
to be explicitly set totrue
.