- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Maximum size virtual memory check
- Max file size check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- Stopping Elasticsearch
- Upgrade Elasticsearch
- Set up X-Pack
- Breaking changes
- Breaking changes in 6.0
- Aggregations changes
- Analysis changes
- Cat API changes
- Clients changes
- Cluster changes
- Document API changes
- Indices changes
- Ingest changes
- Java API changes
- Mapping changes
- Packaging changes
- Percolator changes
- Plugins changes
- Reindex changes
- REST changes
- Scripting changes
- Search and Query DSL changes
- Settings changes
- Stats and info changes
- Breaking changes in 6.1
- Breaking changes in 6.0
- X-Pack Breaking Changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- URL Decode Processor
- Monitoring Elasticsearch
- X-Pack APIs
- Info API
- Explore API
- Machine Learning APIs
- Close Jobs
- Create Datafeeds
- Create Jobs
- Delete Datafeeds
- Delete Jobs
- Delete Model Snapshots
- Flush Jobs
- Forecast Jobs
- Get Buckets
- Get Overall Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Security APIs
- Watcher APIs
- Migration APIs
- Deprecation Info APIs
- Definitions
- X-Pack Commands
- How To
- Testing
- Glossary of terms
- Release Notes
- 6.1.4 Release Notes
- 6.1.3 Release Notes
- 6.1.2 Release Notes
- 6.1.1 Release Notes
- 6.1.0 Release Notes
- 6.0.1 Release Notes
- 6.0.0 Release Notes
- 6.0.0-rc2 Release Notes
- 6.0.0-rc1 Release Notes
- 6.0.0-beta2 Release Notes
- 6.0.0-beta1 Release Notes
- 6.0.0-alpha2 Release Notes
- 6.0.0-alpha1 Release Notes
- 6.0.0-alpha1 Release Notes (Changes previously released in 5.x)
- X-Pack Release Notes
WARNING: Version 6.1 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Tune for indexing speed
editTune for indexing speed
editUse bulk requests
editBulk requests will yield much better performance than single-document index requests. In order to know the optimal size of a bulk request, you should run a benchmark on a single node with a single shard. First try to index 100 documents at once, then 200, then 400, etc. doubling the number of documents in a bulk request in every benchmark run. When the indexing speed starts to plateau then you know you reached the optimal size of a bulk request for your data. In case of tie, it is better to err in the direction of too few rather than too many documents. Beware that too large bulk requests might put the cluster under memory pressure when many of them are sent concurrently, so it is advisable to avoid going beyond a couple tens of megabytes per request even if larger requests seem to perform better.
Use multiple workers/threads to send data to Elasticsearch
editA single thread sending bulk requests is unlikely to be able to max out the indexing capacity of an Elasticsearch cluster. In order to use all resources of the cluster, you should send data from multiple threads or processes. In addition to making better use of the resources of the cluster, this should help reduce the cost of each fsync.
Make sure to watch for TOO_MANY_REQUESTS (429)
response codes
(EsRejectedExecutionException
with the Java client), which is the way that
Elasticsearch tells you that it cannot keep up with the current indexing rate.
When it happens, you should pause indexing a bit before trying again, ideally
with randomized exponential backoff.
Similarly to sizing bulk requests, only testing can tell what the optimal number of workers is. This can be tested by progressively increasing the number of workers until either I/O or CPU is saturated on the cluster.
Increase the refresh interval
editThe default index.refresh_interval
is 1s
, which
forces Elasticsearch to create a new segment every second.
Increasing this value (to say, 30s
) will allow larger segments to flush and
decreases future merge pressure.
Disable refresh and replicas for initial loads
editIf you need to load a large amount of data at once, you should disable refresh
by setting index.refresh_interval
to -1
and set index.number_of_replicas
to 0
. This will temporarily put your index at risk since the loss of any shard
will cause data loss, but at the same time indexing will be faster since
documents will be indexed only once. Once the initial loading is finished, you
can set index.refresh_interval
and index.number_of_replicas
back to their
original values.
Disable swapping
editYou should make sure that the operating system is not swapping out the java process by disabling swapping.
Give memory to the filesystem cache
editThe filesystem cache will be used in order to buffer I/O operations. You should make sure to give at least half the memory of the machine running Elasticsearch to the filesystem cache.
Use auto-generated ids
editWhen indexing a document that has an explicit id, Elasticsearch needs to check whether a document with the same id already exists within the same shard, which is a costly operation and gets even more costly as the index grows. By using auto-generated ids, Elasticsearch can skip this check, which makes indexing faster.
Use faster hardware
editIf indexing is I/O bound, you should investigate giving more memory to the
filesystem cache (see above) or buying faster drives. In particular SSD drives
are known to perform better than spinning disks. Always use local storage,
remote filesystems such as NFS
or SMB
should be avoided. Also beware of
virtualized storage such as Amazon’s Elastic Block Storage
. Virtualized
storage works very well with Elasticsearch, and it is appealing since it is so
fast and simple to set up, but it is also unfortunately inherently slower on an
ongoing basis when compared to dedicated local storage. If you put an index on
EBS
, be sure to use provisioned IOPS otherwise operations could be quickly
throttled.
Stripe your index across multiple SSDs by configuring a RAID 0 array. Remember that it will increase the risk of failure since the failure of any one SSD destroys the index. However this is typically the right tradeoff to make: optimize single shards for maximum performance, and then add replicas across different nodes so there’s redundancy for any node failures. You can also use snapshot and restore to backup the index for further insurance.
Indexing buffer size
editIf your node is doing only heavy indexing, be sure
indices.memory.index_buffer_size
is large enough to give
at most 512 MB indexing buffer per shard doing heavy indexing (beyond that
indexing performance does not typically improve). Elasticsearch takes that
setting (a percentage of the java heap or an absolute byte-size), and
uses it as a shared buffer across all active shards. Very active shards will
naturally use this buffer more than shards that are performing lightweight
indexing.
The default is 10%
which is often plenty: for example, if you give the JVM
10GB of memory, it will give 1GB to the index buffer, which is enough to host
two shards that are heavily indexing.
Disable _field_names
editThe _field_names
field introduces some
index-time overhead, so you might want to disable it if you never need to
run exists
queries.
Additional optimizations
editMany of the strategies outlined in Tune for disk usage also provide an improvement in the speed of indexing.
On this page
- Use bulk requests
- Use multiple workers/threads to send data to Elasticsearch
- Increase the refresh interval
- Disable refresh and replicas for initial loads
- Disable swapping
- Give memory to the filesystem cache
- Use auto-generated ids
- Use faster hardware
- Indexing buffer size
- Disable
_field_names
- Additional optimizations