- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Maximum size virtual memory check
- Max file size check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- Stopping Elasticsearch
- Upgrade Elasticsearch
- Set up X-Pack
- Breaking changes
- Breaking changes in 6.0
- Aggregations changes
- Analysis changes
- Cat API changes
- Clients changes
- Cluster changes
- Document API changes
- Indices changes
- Ingest changes
- Java API changes
- Mapping changes
- Packaging changes
- Percolator changes
- Plugins changes
- Reindex changes
- REST changes
- Scripting changes
- Search and Query DSL changes
- Settings changes
- Stats and info changes
- Breaking changes in 6.1
- Breaking changes in 6.0
- X-Pack Breaking Changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- URL Decode Processor
- Monitoring Elasticsearch
- X-Pack APIs
- Info API
- Explore API
- Machine Learning APIs
- Close Jobs
- Create Datafeeds
- Create Jobs
- Delete Datafeeds
- Delete Jobs
- Delete Model Snapshots
- Flush Jobs
- Forecast Jobs
- Get Buckets
- Get Overall Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Security APIs
- Watcher APIs
- Migration APIs
- Deprecation Info APIs
- Definitions
- X-Pack Commands
- How To
- Testing
- Glossary of terms
- Release Notes
- 6.1.4 Release Notes
- 6.1.3 Release Notes
- 6.1.2 Release Notes
- 6.1.1 Release Notes
- 6.1.0 Release Notes
- 6.0.1 Release Notes
- 6.0.0 Release Notes
- 6.0.0-rc2 Release Notes
- 6.0.0-rc1 Release Notes
- 6.0.0-beta2 Release Notes
- 6.0.0-beta1 Release Notes
- 6.0.0-alpha2 Release Notes
- 6.0.0-alpha1 Release Notes
- 6.0.0-alpha1 Release Notes (Changes previously released in 5.x)
- X-Pack Release Notes
WARNING: Version 6.1 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Diversified Sampler Aggregation
editDiversified Sampler Aggregation
editLike the sampler
aggregation this is a filtering aggregation used to limit any sub aggregations' processing to a sample of the top-scoring documents.
The diversified_sampler
aggregation adds the ability to limit the number of matches that share a common value such as an "author".
Any good market researcher will tell you that when working with samples of data it is important that the sample represents a healthy variety of opinions rather than being skewed by any single voice. The same is true with aggregations and sampling with these diversify settings can offer a way to remove the bias in your content (an over-populated geography, a large spike in a timeline or an over-active forum spammer).
Example use cases:
- Tightening the focus of analytics to high-relevance matches rather than the potentially very long tail of low-quality matches
- Removing bias from analytics by ensuring fair representation of content from different sources
-
Reducing the running cost of aggregations that can produce useful results using only samples e.g.
significant_terms
A choice of field
or script
setting is used to provide values used for de-duplication and the max_docs_per_value
setting controls the maximum
number of documents collected on any one shard which share a common value. The default setting for max_docs_per_value
is 1.
The aggregation will throw an error if the choice of field
or script
produces multiple values for a single document (de-duplication using multi-valued fields is not supported due to efficiency concerns).
Example:
We might want to see which tags are strongly associated with #elasticsearch
on StackOverflow
forum posts but ignoring the effects of some prolific users with a tendency to misspell #Kibana as #Cabana.
POST /stackoverflow/_search?size=0 { "query": { "query_string": { "query": "tags:elasticsearch" } }, "aggs": { "my_unbiased_sample": { "diversified_sampler": { "shard_size": 200, "field" : "author" }, "aggs": { "keywords": { "significant_terms": { "field": "tags", "exclude": ["elasticsearch"] } } } } } }
Response:
{ ... "aggregations": { "my_unbiased_sample": { "doc_count": 151, "keywords": { "doc_count": 151, "bg_count": 650, "buckets": [ { "key": "kibana", "doc_count": 150, "score": 2.213, "bg_count": 200 } ] } } } }
151 documents were sampled in total. |
|
The results of the significant_terms aggregation are not skewed by any single author’s quirks because we asked for a maximum of one post from any one author in our sample. |
Scripted example:
editIn this scenario we might want to diversify on a combination of field values. We can use a script
to produce a hash of the
multiple values in a tags field to ensure we don’t have a sample that consists of the same repeated combinations of tags.
POST /stackoverflow/_search?size=0 { "query": { "query_string": { "query": "tags:kibana" } }, "aggs": { "my_unbiased_sample": { "diversified_sampler": { "shard_size": 200, "max_docs_per_value" : 3, "script" : { "lang": "painless", "source": "doc['tags'].values.hashCode()" } }, "aggs": { "keywords": { "significant_terms": { "field": "tags", "exclude": ["kibana"] } } } } } }
Response:
{ ... "aggregations": { "my_unbiased_sample": { "doc_count": 6, "keywords": { "doc_count": 6, "bg_count": 650, "buckets": [ { "key": "logstash", "doc_count": 3, "score": 2.213, "bg_count": 50 }, { "key": "elasticsearch", "doc_count": 3, "score": 1.34, "bg_count": 200 } ] } } } }
shard_size
editThe shard_size
parameter limits how many top-scoring documents are collected in the sample processed on each shard.
The default value is 100.
max_docs_per_value
editThe max_docs_per_value
is an optional parameter and limits how many documents are permitted per choice of de-duplicating value.
The default setting is "1".
execution_hint
editThe optional execution_hint
setting can influence the management of the values used for de-duplication.
Each option will hold up to shard_size
values in memory while performing de-duplication but the type of value held can be controlled as follows:
-
hold field values directly (
map
) -
hold ordinals of the field as determined by the Lucene index (
global_ordinals
) -
hold hashes of the field values - with potential for hash collisions (
bytes_hash
)
The default setting is to use global_ordinals
if this information is available from the Lucene index and reverting to map
if not.
The bytes_hash
setting may prove faster in some cases but introduces the possibility of false positives in de-duplication logic due to the possibility of hash collisions.
Please note that Elasticsearch will ignore the choice of execution hint if it is not applicable and that there is no backward compatibility guarantee on these hints.
Limitations
editCannot be nested under breadth_first
aggregations
editBeing a quality-based filter the diversified_sampler aggregation needs access to the relevance score produced for each document.
It therefore cannot be nested under a terms
aggregation which has the collect_mode
switched from the default depth_first
mode to breadth_first
as this discards scores.
In this situation an error will be thrown.
Limited de-dup logic.
editThe de-duplication logic applies only at a shard level so will not apply across shards.
No specialized syntax for geo/date fields
editCurrently the syntax for defining the diversifying values is defined by a choice of field
or
script
- there is no added syntactical sugar for expressing geo or date units such as "7d" (7
days). This support may be added in a later release and users will currently have to create these
sorts of values using a script.
On this page