- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Maximum size virtual memory check
- Max file size check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- Stopping Elasticsearch
- Upgrade Elasticsearch
- Set up X-Pack
- Breaking changes
- Breaking changes in 6.0
- Aggregations changes
- Analysis changes
- Cat API changes
- Clients changes
- Cluster changes
- Document API changes
- Indices changes
- Ingest changes
- Java API changes
- Mapping changes
- Packaging changes
- Percolator changes
- Plugins changes
- Reindex changes
- REST changes
- Scripting changes
- Search and Query DSL changes
- Settings changes
- Stats and info changes
- Breaking changes in 6.1
- Breaking changes in 6.0
- X-Pack Breaking Changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- URL Decode Processor
- Monitoring Elasticsearch
- X-Pack APIs
- Info API
- Explore API
- Machine Learning APIs
- Close Jobs
- Create Datafeeds
- Create Jobs
- Delete Datafeeds
- Delete Jobs
- Delete Model Snapshots
- Flush Jobs
- Forecast Jobs
- Get Buckets
- Get Overall Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Security APIs
- Watcher APIs
- Migration APIs
- Deprecation Info APIs
- Definitions
- X-Pack Commands
- How To
- Testing
- Glossary of terms
- Release Notes
- 6.1.4 Release Notes
- 6.1.3 Release Notes
- 6.1.2 Release Notes
- 6.1.1 Release Notes
- 6.1.0 Release Notes
- 6.0.1 Release Notes
- 6.0.0 Release Notes
- 6.0.0-rc2 Release Notes
- 6.0.0-rc1 Release Notes
- 6.0.0-beta2 Release Notes
- 6.0.0-beta1 Release Notes
- 6.0.0-alpha2 Release Notes
- 6.0.0-alpha1 Release Notes
- 6.0.0-alpha1 Release Notes (Changes previously released in 5.x)
- X-Pack Release Notes
WARNING: Version 6.1 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Getting consistent scoring
editGetting consistent scoring
editThe fact that Elasticsearch operates with shards and replicas adds challenges when it comes to having good scoring.
Scores are not reproducible
editSay the same user runs the same request twice in a row and documents do not come
back in the same order both times, this is a pretty bad experience isn’t it?
Unfortunately this is something that can happen if you have replicas
(index.number_of_replicas
is greater than 0). The reason is that Elasticsearch
selects the shards that the query should go to in a round-robin fashion, so it
is quite likely if you run the same query twice in a row that it will go to
different copies of the same shard.
Now why is it a problem? Index statistics are an important part of the score. And these index statistics may be different across copies of the same shard due to deleted documents. As you may know when documents are deleted or updated, the old document is not immediately removed from the index, it is just marked as deleted and it will only be removed from disk on the next time that the segment this old document belongs to is merged. However for practical reasons, those deleted documents are taken into account for index statistics. So imagine that the primary shard just finished a large merge that removed lots of deleted documents, then it might have index statistics that are sufficiently different from the replica (which still have plenty of deleted documents) so that scores are different too.
The recommended way to work around this issue is to use a string that identifies the user that is logged is (a user id or session id for instance) as a preference. This ensures that all queries of a given user are always going to hit the same shards, so scores remain more consistent across queries.
This work around has another benefit: when two documents have the same score,
they will be sorted by their internal Lucene doc id (which is unrelated to the
_id
or _uid
) by default. However these doc ids could be different across
copies of the same shard. So by always hitting the same shard, we would get
more consistent ordering of documents that have the same scores.
Relevancy looks wrong
editIf you notice that two documents with the same content get different scores or that an exact match is not ranked first, then the issue might be related to sharding. By default, Elasticsearch makes each shard responsible for producing its own scores. However since index statistics are an important contributor to the scores, this only works well if shards have similar index statistics. The assumption is that since documents are routed evenly to shards by default, then index statistics should be very similar and scoring would work as expected. However in the event that you either:
- use routing at index time,
- query multiple indices,
- or have too little data in your index
then there are good chances that all shards that are involved in the search request do not have similar index statistics and relevancy could be bad.
If you have a small dataset, the easiest way to work around this issue is to
index everything into an index that has a single shard
(index.number_of_shards: 1
). Then index statistics will be the same for all
documents and scores will be consistent.
Otherwise the recommended way to work around this issue is to use the
dfs_query_then_fetch
search type. This will make
Elasticsearch perform an inital round trip to all involved shards, asking
them for their index statistics relatively to the query, then the coordinating
node will merge those statistics and send the merged statistics alongside the
request when asking shards to perform the query
phase, so that shards can
use these global statistics rather than their own statistics in order to do the
scoring.
In most cases, this additional round trip should be very cheap. However in the event that your query contains a very large number of fields/terms or fuzzy queries, beware that gathering statistics alone might not be cheap since all terms have to be looked up in the terms dictionaries in order to look up statistics.
On this page