- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Maximum size virtual memory check
- Max file size check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- Stopping Elasticsearch
- Upgrade Elasticsearch
- Set up X-Pack
- Breaking changes
- Breaking changes in 6.0
- Aggregations changes
- Analysis changes
- Cat API changes
- Clients changes
- Cluster changes
- Document API changes
- Indices changes
- Ingest changes
- Java API changes
- Mapping changes
- Packaging changes
- Percolator changes
- Plugins changes
- Reindex changes
- REST changes
- Scripting changes
- Search and Query DSL changes
- Settings changes
- Stats and info changes
- Breaking changes in 6.1
- Breaking changes in 6.0
- X-Pack Breaking Changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- URL Decode Processor
- Monitoring Elasticsearch
- X-Pack APIs
- Info API
- Explore API
- Machine Learning APIs
- Close Jobs
- Create Datafeeds
- Create Jobs
- Delete Datafeeds
- Delete Jobs
- Delete Model Snapshots
- Flush Jobs
- Forecast Jobs
- Get Buckets
- Get Overall Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Security APIs
- Watcher APIs
- Migration APIs
- Deprecation Info APIs
- Definitions
- X-Pack Commands
- How To
- Testing
- Glossary of terms
- Release Notes
- 6.1.4 Release Notes
- 6.1.3 Release Notes
- 6.1.2 Release Notes
- 6.1.1 Release Notes
- 6.1.0 Release Notes
- 6.0.1 Release Notes
- 6.0.0 Release Notes
- 6.0.0-rc2 Release Notes
- 6.0.0-rc1 Release Notes
- 6.0.0-beta2 Release Notes
- 6.0.0-beta1 Release Notes
- 6.0.0-alpha2 Release Notes
- 6.0.0-alpha1 Release Notes
- 6.0.0-alpha1 Release Notes (Changes previously released in 5.x)
- X-Pack Release Notes
WARNING: Version 6.1 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Scroll
editScroll
editWhile a search
request returns a single “page” of results, the scroll
API can be used to retrieve large numbers of results (or even all results)
from a single search request, in much the same way as you would use a cursor
on a traditional database.
Scrolling is not intended for real time user requests, but rather for processing large amounts of data, e.g. in order to reindex the contents of one index into a new index with a different configuration.
The results that are returned from a scroll request reflect the state of
the index at the time that the initial search
request was made, like a
snapshot in time. Subsequent changes to documents (index, update or delete)
will only affect later search requests.
In order to use scrolling, the initial search request should specify the
scroll
parameter in the query string, which tells Elasticsearch how long it
should keep the “search context” alive (see Keeping the search context alive), eg ?scroll=1m
.
POST /twitter/tweet/_search?scroll=1m { "size": 100, "query": { "match" : { "title" : "elasticsearch" } } }
The result from the above request includes a _scroll_id
, which should
be passed to the scroll
API in order to retrieve the next batch of
results.
POST /_search/scroll { "scroll" : "1m", "scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==" }
|
|
The |
|
The |
The size
parameter allows you to configure the maximum number of hits to be
returned with each batch of results. Each call to the scroll
API returns the
next batch of results until there are no more results left to return, ie the
hits
array is empty.
The initial search request and each subsequent scroll request
returns a new _scroll_id
— only the most recent _scroll_id
should be
used.
If the request specifies aggregations, only the initial search response will contain the aggregations results.
Scroll requests have optimizations that make them faster when the sort
order is _doc
. If you want to iterate over all documents regardless of the
order, this is the most efficient option:
GET /_search?scroll=1m { "sort": [ "_doc" ] }
Keeping the search context alive
editThe scroll
parameter (passed to the search
request and to every scroll
request) tells Elasticsearch how long it should keep the search context alive.
Its value (e.g. 1m
, see Time units) does not need to be long enough to
process all data — it just needs to be long enough to process the previous
batch of results. Each scroll
request (with the scroll
parameter) sets a
new expiry time.
Normally, the background merge process optimizes the index by merging together smaller segments to create new bigger segments, at which time the smaller segments are deleted. This process continues during scrolling, but an open search context prevents the old segments from being deleted while they are still in use. This is how Elasticsearch is able to return the results of the initial search request, regardless of subsequent changes to documents.
Keeping older segments alive means that more file handles are needed. Ensure that you have configured your nodes to have ample free file handles. See File Descriptors.
You can check how many search contexts are open with the nodes stats API:
GET /_nodes/stats/indices/search
Clear scroll API
editSearch context are automatically removed when the scroll
timeout has been
exceeded. However keeping scrolls open has a cost, as discussed in the
previous section so scrolls should be explicitly
cleared as soon as the scroll is not being used anymore using the
clear-scroll
API:
DELETE /_search/scroll { "scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==" }
Multiple scroll IDs can be passed as array:
DELETE /_search/scroll { "scroll_id" : [ "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==", "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAAABFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAAAxZrUllkUVlCa1NqNmRMaUhiQlZkMWFBAAAAAAAAAAIWa1JZZFFZQmtTajZkTGlIYkJWZDFhQQAAAAAAAAAFFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAABBZrUllkUVlCa1NqNmRMaUhiQlZkMWFB" ] }
All search contexts can be cleared with the _all
parameter:
DELETE /_search/scroll/_all
The scroll_id
can also be passed as a query string parameter or in the request body.
Multiple scroll IDs can be passed as comma separated values:
DELETE /_search/scroll/DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==,DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAAABFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAAAxZrUllkUVlCa1NqNmRMaUhiQlZkMWFBAAAAAAAAAAIWa1JZZFFZQmtTajZkTGlIYkJWZDFhQQAAAAAAAAAFFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAABBZrUllkUVlCa1NqNmRMaUhiQlZkMWFB
Sliced Scroll
editFor scroll queries that return a lot of documents it is possible to split the scroll in multiple slices which can be consumed independently:
GET /twitter/tweet/_search?scroll=1m { "slice": { "id": 0, "max": 2 }, "query": { "match" : { "title" : "elasticsearch" } } } GET /twitter/tweet/_search?scroll=1m { "slice": { "id": 1, "max": 2 }, "query": { "match" : { "title" : "elasticsearch" } } }
The result from the first request returned documents that belong to the first slice (id: 0) and the result from the
second request returned documents that belong to the second slice. Since the maximum number of slices is set to 2
the union of the results of the two requests is equivalent to the results of a scroll query without slicing.
By default the splitting is done on the shards first and then locally on each shard using the _uid field
with the following formula:
slice(doc) = floorMod(hashCode(doc._uid), max)
For instance if the number of shards is equal to 2 and the user requested 4 slices then the slices 0 and 2 are assigned
to the first shard and the slices 1 and 3 are assigned to the second shard.
Each scroll is independent and can be processed in parallel like any scroll request.
If the number of slices is bigger than the number of shards the slice filter is very slow on the first calls, it has a complexity of O(N) and a memory cost equals to N bits per slice where N is the total number of documents in the shard. After few calls the filter should be cached and subsequent calls should be faster but you should limit the number of sliced query you perform in parallel to avoid the memory explosion.
To avoid this cost entirely it is possible to use the doc_values
of another field to do the slicing
but the user must ensure that the field has the following properties:
- The field is numeric.
-
doc_values
are enabled on that field - Every document should contain a single value. If a document has multiple values for the specified field, the first value is used.
- The value for each document should be set once when the document is created and never updated. This ensures that each slice gets deterministic results.
- The cardinality of the field should be high. This ensures that each slice gets approximately the same amount of documents.
GET /twitter/tweet/_search?scroll=1m { "slice": { "field": "date", "id": 0, "max": 10 }, "query": { "match" : { "title" : "elasticsearch" } } }
For append only time-based indices, the timestamp
field can be used safely.
By default the maximum number of slices allowed per scroll is limited to 1024.
You can update the index.max_slices_per_scroll
index setting to bypass this limit.