New

The executive guide to generative AI

Read more

Mapping character filter

edit

The mapping character filter accepts a map of keys and values. Whenever it encounters a string of characters that is the same as a key, it replaces them with the value associated with that key.

Matching is greedy; the longest pattern matching at a given point wins. Replacements are allowed to be the empty string.

The mapping filter uses Lucene’s MappingCharFilter.

Example

edit

The following analyze API request uses the mapping filter to convert Hindu-Arabic numerals (٠‎١٢٣٤٥٦٧٨‎٩‎) into their Arabic-Latin equivalents (0123456789), changing the text My license plate is ٢٥٠١٥ to My license plate is 25015.

resp = client.indices.analyze(
    tokenizer="keyword",
    char_filter=[
        {
            "type": "mapping",
            "mappings": [
                "٠ => 0",
                "١ => 1",
                "٢ => 2",
                "٣ => 3",
                "٤ => 4",
                "٥ => 5",
                "٦ => 6",
                "٧ => 7",
                "٨ => 8",
                "٩ => 9"
            ]
        }
    ],
    text="My license plate is ٢٥٠١٥",
)
print(resp)
response = client.indices.analyze(
  body: {
    tokenizer: 'keyword',
    char_filter: [
      {
        type: 'mapping',
        mappings: [
          '٠ => 0',
          '١ => 1',
          '٢ => 2',
          '٣ => 3',
          '٤ => 4',
          '٥ => 5',
          '٦ => 6',
          '٧ => 7',
          '٨ => 8',
          '٩ => 9'
        ]
      }
    ],
    text: 'My license plate is ٢٥٠١٥'
  }
)
puts response
const response = await client.indices.analyze({
  tokenizer: "keyword",
  char_filter: [
    {
      type: "mapping",
      mappings: [
        "٠ => 0",
        "١ => 1",
        "٢ => 2",
        "٣ => 3",
        "٤ => 4",
        "٥ => 5",
        "٦ => 6",
        "٧ => 7",
        "٨ => 8",
        "٩ => 9",
      ],
    },
  ],
  text: "My license plate is ٢٥٠١٥",
});
console.log(response);
GET /_analyze
{
  "tokenizer": "keyword",
  "char_filter": [
    {
      "type": "mapping",
      "mappings": [
        "٠ => 0",
        "١ => 1",
        "٢ => 2",
        "٣ => 3",
        "٤ => 4",
        "٥ => 5",
        "٦ => 6",
        "٧ => 7",
        "٨ => 8",
        "٩ => 9"
      ]
    }
  ],
  "text": "My license plate is ٢٥٠١٥"
}

The filter produces the following text:

[ My license plate is 25015 ]

Configurable parameters

edit
mappings

(Required*, array of strings) Array of mappings, with each element having the form key => value.

Either this or the mappings_path parameter must be specified.

mappings_path

(Required*, string) Path to a file containing key => value mappings.

This path must be absolute or relative to the config location, and the file must be UTF-8 encoded. Each mapping in the file must be separated by a line break.

Either this or the mappings parameter must be specified.

Customize and add to an analyzer

edit

To customize the mappings filter, duplicate it to create the basis for a new custom character filter. You can modify the filter using its configurable parameters.

The following create index API request configures a new custom analyzer using a custom mappings filter, my_mappings_char_filter.

The my_mappings_char_filter filter replaces the :) and :( emoticons with a text equivalent.

resp = client.indices.create(
    index="my-index-000001",
    settings={
        "analysis": {
            "analyzer": {
                "my_analyzer": {
                    "tokenizer": "standard",
                    "char_filter": [
                        "my_mappings_char_filter"
                    ]
                }
            },
            "char_filter": {
                "my_mappings_char_filter": {
                    "type": "mapping",
                    "mappings": [
                        ":) => _happy_",
                        ":( => _sad_"
                    ]
                }
            }
        }
    },
)
print(resp)
response = client.indices.create(
  index: 'my-index-000001',
  body: {
    settings: {
      analysis: {
        analyzer: {
          my_analyzer: {
            tokenizer: 'standard',
            char_filter: [
              'my_mappings_char_filter'
            ]
          }
        },
        char_filter: {
          my_mappings_char_filter: {
            type: 'mapping',
            mappings: [
              ':) => _happy_',
              ':( => _sad_'
            ]
          }
        }
      }
    }
  }
)
puts response
const response = await client.indices.create({
  index: "my-index-000001",
  settings: {
    analysis: {
      analyzer: {
        my_analyzer: {
          tokenizer: "standard",
          char_filter: ["my_mappings_char_filter"],
        },
      },
      char_filter: {
        my_mappings_char_filter: {
          type: "mapping",
          mappings: [":) => _happy_", ":( => _sad_"],
        },
      },
    },
  },
});
console.log(response);
PUT /my-index-000001
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "standard",
          "char_filter": [
            "my_mappings_char_filter"
          ]
        }
      },
      "char_filter": {
        "my_mappings_char_filter": {
          "type": "mapping",
          "mappings": [
            ":) => _happy_",
            ":( => _sad_"
          ]
        }
      }
    }
  }
}

The following analyze API request uses the custom my_mappings_char_filter to replace :( with _sad_ in the text I'm delighted about it :(.

resp = client.indices.analyze(
    index="my-index-000001",
    tokenizer="keyword",
    char_filter=[
        "my_mappings_char_filter"
    ],
    text="I'm delighted about it :(",
)
print(resp)
const response = await client.indices.analyze({
  index: "my-index-000001",
  tokenizer: "keyword",
  char_filter: ["my_mappings_char_filter"],
  text: "I'm delighted about it :(",
});
console.log(response);
GET /my-index-000001/_analyze
{
  "tokenizer": "keyword",
  "char_filter": [ "my_mappings_char_filter" ],
  "text": "I'm delighted about it :("
}

The filter produces the following text:

[ I'm delighted about it _sad_ ]
Was this helpful?
Feedback