- Elasticsearch Guide: other versions:
- What’s new in 8.17
- Elasticsearch basics
- Quick starts
- Set up Elasticsearch
- Run Elasticsearch locally
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Data stream lifecycle settings
- Field data cache settings
- Local gateway settings
- Health Diagnostic settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- Inference settings
- License settings
- Machine learning settings
- Monitoring settings
- Node settings
- Networking
- Node query cache settings
- Path settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Set JVM options
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Dynamic mapping
- Explicit mapping
- Runtime fields
- Field data types
- Aggregate metric
- Alias
- Arrays
- Binary
- Boolean
- Completion
- Date
- Date nanoseconds
- Dense vector
- Flattened
- Geopoint
- Geoshape
- Histogram
- IP
- Join
- Keyword
- Nested
- Numeric
- Object
- Pass-through object
- Percolator
- Point
- Range
- Rank feature
- Rank features
- Search-as-you-type
- Semantic text
- Shape
- Sparse vector
- Text
- Token count
- Unsigned long
- Version
- Metadata fields
- Mapping parameters
analyzer
coerce
copy_to
doc_values
dynamic
eager_global_ordinals
enabled
format
ignore_above
index.mapping.ignore_above
ignore_malformed
index
index_options
index_phrases
index_prefixes
meta
fields
normalizer
norms
null_value
position_increment_gap
properties
search_analyzer
similarity
store
subobjects
term_vector
- Mapping limit settings
- Removal of mapping types
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- IP Location
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Terminate
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Ingest pipelines in Search
- Aliases
- Search your data
- Re-ranking
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- Connectors
- EQL
- ES|QL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Cross-cluster replication
- Data store architecture
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Connector APIs
- Create connector
- Delete connector
- Get connector
- List connectors
- Update connector API key id
- Update connector configuration
- Update connector index name
- Update connector features
- Update connector filtering
- Update connector name and description
- Update connector pipeline
- Update connector scheduling
- Update connector service type
- Create connector sync job
- Cancel connector sync job
- Delete connector sync job
- Get connector sync job
- List connector sync jobs
- Check in a connector
- Update connector error
- Update connector last sync stats
- Update connector status
- Check in connector sync job
- Claim connector sync job
- Set connector sync job error
- Set connector sync job stats
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- ES|QL APIs
- Features APIs
- Fleet APIs
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Resolve cluster
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Inference APIs
- Delete inference API
- Get inference API
- Perform inference API
- Create inference API
- Stream inference API
- Update inference API
- AlibabaCloud AI Search inference service
- Amazon Bedrock inference service
- Anthropic inference service
- Azure AI studio inference service
- Azure OpenAI inference service
- Cohere inference service
- Elasticsearch inference service
- ELSER inference service
- Google AI Studio inference service
- Google Vertex AI inference service
- HuggingFace inference service
- Mistral inference service
- OpenAI inference service
- Watsonx inference service
- Info API
- Ingest APIs
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Root API
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Bulk create or update roles API
- Bulk delete roles API
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Query Role
- Get service accounts
- Get service account credentials
- Get Security settings
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Query User
- Update API key
- Update Security settings
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Text structure APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- Optimizations
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Troubleshooting broken repositories
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- Troubleshooting an unbalanced cluster
- Capture diagnostics
- Migration guide
- Release notes
- Elasticsearch version 8.17.1
- Elasticsearch version 8.17.0
- Elasticsearch version 8.16.2
- Elasticsearch version 8.16.1
- Elasticsearch version 8.16.0
- Elasticsearch version 8.15.5
- Elasticsearch version 8.15.4
- Elasticsearch version 8.15.3
- Elasticsearch version 8.15.2
- Elasticsearch version 8.15.1
- Elasticsearch version 8.15.0
- Elasticsearch version 8.14.3
- Elasticsearch version 8.14.2
- Elasticsearch version 8.14.1
- Elasticsearch version 8.14.0
- Elasticsearch version 8.13.4
- Elasticsearch version 8.13.3
- Elasticsearch version 8.13.2
- Elasticsearch version 8.13.1
- Elasticsearch version 8.13.0
- Elasticsearch version 8.12.2
- Elasticsearch version 8.12.1
- Elasticsearch version 8.12.0
- Elasticsearch version 8.11.4
- Elasticsearch version 8.11.3
- Elasticsearch version 8.11.2
- Elasticsearch version 8.11.1
- Elasticsearch version 8.11.0
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Path hierarchy tokenizer
editPath hierarchy tokenizer
editThe path_hierarchy
tokenizer takes a hierarchical value like a filesystem
path, splits on the path separator, and emits a term for each component in the
tree. The path_hierarcy
tokenizer uses Lucene’s
PathHierarchyTokenizer
underneath.
Example output
editresp = client.indices.analyze( tokenizer="path_hierarchy", text="/one/two/three", ) print(resp)
response = client.indices.analyze( body: { tokenizer: 'path_hierarchy', text: '/one/two/three' } ) puts response
const response = await client.indices.analyze({ tokenizer: "path_hierarchy", text: "/one/two/three", }); console.log(response);
POST _analyze { "tokenizer": "path_hierarchy", "text": "/one/two/three" }
The above text would produce the following terms:
[ /one, /one/two, /one/two/three ]
Configuration
editThe path_hierarchy
tokenizer accepts the following parameters:
|
The character to use as the path separator. Defaults to |
|
An optional replacement character to use for the delimiter.
Defaults to the |
|
The number of characters read into the term buffer in a single pass.
Defaults to |
|
If |
|
The number of initial tokens to skip. Defaults to |
Example configuration
editIn this example, we configure the path_hierarchy
tokenizer to split on -
characters, and to replace them with /
. The first two tokens are skipped:
resp = client.indices.create( index="my-index-000001", settings={ "analysis": { "analyzer": { "my_analyzer": { "tokenizer": "my_tokenizer" } }, "tokenizer": { "my_tokenizer": { "type": "path_hierarchy", "delimiter": "-", "replacement": "/", "skip": 2 } } } }, ) print(resp) resp1 = client.indices.analyze( index="my-index-000001", analyzer="my_analyzer", text="one-two-three-four-five", ) print(resp1)
response = client.indices.create( index: 'my-index-000001', body: { settings: { analysis: { analyzer: { my_analyzer: { tokenizer: 'my_tokenizer' } }, tokenizer: { my_tokenizer: { type: 'path_hierarchy', delimiter: '-', replacement: '/', skip: 2 } } } } } ) puts response response = client.indices.analyze( index: 'my-index-000001', body: { analyzer: 'my_analyzer', text: 'one-two-three-four-five' } ) puts response
const response = await client.indices.create({ index: "my-index-000001", settings: { analysis: { analyzer: { my_analyzer: { tokenizer: "my_tokenizer", }, }, tokenizer: { my_tokenizer: { type: "path_hierarchy", delimiter: "-", replacement: "/", skip: 2, }, }, }, }, }); console.log(response); const response1 = await client.indices.analyze({ index: "my-index-000001", analyzer: "my_analyzer", text: "one-two-three-four-five", }); console.log(response1);
PUT my-index-000001 { "settings": { "analysis": { "analyzer": { "my_analyzer": { "tokenizer": "my_tokenizer" } }, "tokenizer": { "my_tokenizer": { "type": "path_hierarchy", "delimiter": "-", "replacement": "/", "skip": 2 } } } } } POST my-index-000001/_analyze { "analyzer": "my_analyzer", "text": "one-two-three-four-five" }
The above example produces the following terms:
[ /three, /three/four, /three/four/five ]
If we were to set reverse
to true
, it would produce the following:
[ one/two/three/, two/three/, three/ ]
Detailed examples
editA common use-case for the path_hierarchy
tokenizer is filtering results by
file paths. If indexing a file path along with the data, the use of the
path_hierarchy
tokenizer to analyze the path allows filtering the results
by different parts of the file path string.
This example configures an index to have two custom analyzers and applies
those analyzers to multifields of the file_path
text field that will
store filenames. One of the two analyzers uses reverse tokenization.
Some sample documents are then indexed to represent some file paths
for photos inside photo folders of two different users.
resp = client.indices.create( index="file-path-test", settings={ "analysis": { "analyzer": { "custom_path_tree": { "tokenizer": "custom_hierarchy" }, "custom_path_tree_reversed": { "tokenizer": "custom_hierarchy_reversed" } }, "tokenizer": { "custom_hierarchy": { "type": "path_hierarchy", "delimiter": "/" }, "custom_hierarchy_reversed": { "type": "path_hierarchy", "delimiter": "/", "reverse": "true" } } } }, mappings={ "properties": { "file_path": { "type": "text", "fields": { "tree": { "type": "text", "analyzer": "custom_path_tree" }, "tree_reversed": { "type": "text", "analyzer": "custom_path_tree_reversed" } } } } }, ) print(resp) resp1 = client.index( index="file-path-test", id="1", document={ "file_path": "/User/alice/photos/2017/05/16/my_photo1.jpg" }, ) print(resp1) resp2 = client.index( index="file-path-test", id="2", document={ "file_path": "/User/alice/photos/2017/05/16/my_photo2.jpg" }, ) print(resp2) resp3 = client.index( index="file-path-test", id="3", document={ "file_path": "/User/alice/photos/2017/05/16/my_photo3.jpg" }, ) print(resp3) resp4 = client.index( index="file-path-test", id="4", document={ "file_path": "/User/alice/photos/2017/05/15/my_photo1.jpg" }, ) print(resp4) resp5 = client.index( index="file-path-test", id="5", document={ "file_path": "/User/bob/photos/2017/05/16/my_photo1.jpg" }, ) print(resp5)
response = client.indices.create( index: 'file-path-test', body: { settings: { analysis: { analyzer: { custom_path_tree: { tokenizer: 'custom_hierarchy' }, custom_path_tree_reversed: { tokenizer: 'custom_hierarchy_reversed' } }, tokenizer: { custom_hierarchy: { type: 'path_hierarchy', delimiter: '/' }, custom_hierarchy_reversed: { type: 'path_hierarchy', delimiter: '/', reverse: 'true' } } } }, mappings: { properties: { file_path: { type: 'text', fields: { tree: { type: 'text', analyzer: 'custom_path_tree' }, tree_reversed: { type: 'text', analyzer: 'custom_path_tree_reversed' } } } } } } ) puts response response = client.index( index: 'file-path-test', id: 1, body: { file_path: '/User/alice/photos/2017/05/16/my_photo1.jpg' } ) puts response response = client.index( index: 'file-path-test', id: 2, body: { file_path: '/User/alice/photos/2017/05/16/my_photo2.jpg' } ) puts response response = client.index( index: 'file-path-test', id: 3, body: { file_path: '/User/alice/photos/2017/05/16/my_photo3.jpg' } ) puts response response = client.index( index: 'file-path-test', id: 4, body: { file_path: '/User/alice/photos/2017/05/15/my_photo1.jpg' } ) puts response response = client.index( index: 'file-path-test', id: 5, body: { file_path: '/User/bob/photos/2017/05/16/my_photo1.jpg' } ) puts response
const response = await client.indices.create({ index: "file-path-test", settings: { analysis: { analyzer: { custom_path_tree: { tokenizer: "custom_hierarchy", }, custom_path_tree_reversed: { tokenizer: "custom_hierarchy_reversed", }, }, tokenizer: { custom_hierarchy: { type: "path_hierarchy", delimiter: "/", }, custom_hierarchy_reversed: { type: "path_hierarchy", delimiter: "/", reverse: "true", }, }, }, }, mappings: { properties: { file_path: { type: "text", fields: { tree: { type: "text", analyzer: "custom_path_tree", }, tree_reversed: { type: "text", analyzer: "custom_path_tree_reversed", }, }, }, }, }, }); console.log(response); const response1 = await client.index({ index: "file-path-test", id: 1, document: { file_path: "/User/alice/photos/2017/05/16/my_photo1.jpg", }, }); console.log(response1); const response2 = await client.index({ index: "file-path-test", id: 2, document: { file_path: "/User/alice/photos/2017/05/16/my_photo2.jpg", }, }); console.log(response2); const response3 = await client.index({ index: "file-path-test", id: 3, document: { file_path: "/User/alice/photos/2017/05/16/my_photo3.jpg", }, }); console.log(response3); const response4 = await client.index({ index: "file-path-test", id: 4, document: { file_path: "/User/alice/photos/2017/05/15/my_photo1.jpg", }, }); console.log(response4); const response5 = await client.index({ index: "file-path-test", id: 5, document: { file_path: "/User/bob/photos/2017/05/16/my_photo1.jpg", }, }); console.log(response5);
PUT file-path-test { "settings": { "analysis": { "analyzer": { "custom_path_tree": { "tokenizer": "custom_hierarchy" }, "custom_path_tree_reversed": { "tokenizer": "custom_hierarchy_reversed" } }, "tokenizer": { "custom_hierarchy": { "type": "path_hierarchy", "delimiter": "/" }, "custom_hierarchy_reversed": { "type": "path_hierarchy", "delimiter": "/", "reverse": "true" } } } }, "mappings": { "properties": { "file_path": { "type": "text", "fields": { "tree": { "type": "text", "analyzer": "custom_path_tree" }, "tree_reversed": { "type": "text", "analyzer": "custom_path_tree_reversed" } } } } } } POST file-path-test/_doc/1 { "file_path": "/User/alice/photos/2017/05/16/my_photo1.jpg" } POST file-path-test/_doc/2 { "file_path": "/User/alice/photos/2017/05/16/my_photo2.jpg" } POST file-path-test/_doc/3 { "file_path": "/User/alice/photos/2017/05/16/my_photo3.jpg" } POST file-path-test/_doc/4 { "file_path": "/User/alice/photos/2017/05/15/my_photo1.jpg" } POST file-path-test/_doc/5 { "file_path": "/User/bob/photos/2017/05/16/my_photo1.jpg" }
A search for a particular file path string against the text field matches all
the example documents, with Bob’s documents ranking highest due to bob
also
being one of the terms created by the standard analyzer boosting relevance for
Bob’s documents.
resp = client.search( index="file-path-test", query={ "match": { "file_path": "/User/bob/photos/2017/05" } }, ) print(resp)
response = client.search( index: 'file-path-test', body: { query: { match: { file_path: '/User/bob/photos/2017/05' } } } ) puts response
const response = await client.search({ index: "file-path-test", query: { match: { file_path: "/User/bob/photos/2017/05", }, }, }); console.log(response);
GET file-path-test/_search { "query": { "match": { "file_path": "/User/bob/photos/2017/05" } } }
It’s simple to match or filter documents with file paths that exist within a
particular directory using the file_path.tree
field.
resp = client.search( index="file-path-test", query={ "term": { "file_path.tree": "/User/alice/photos/2017/05/16" } }, ) print(resp)
response = client.search( index: 'file-path-test', body: { query: { term: { 'file_path.tree' => '/User/alice/photos/2017/05/16' } } } ) puts response
const response = await client.search({ index: "file-path-test", query: { term: { "file_path.tree": "/User/alice/photos/2017/05/16", }, }, }); console.log(response);
GET file-path-test/_search { "query": { "term": { "file_path.tree": "/User/alice/photos/2017/05/16" } } }
With the reverse parameter for this tokenizer, it’s also possible to match
from the other end of the file path, such as individual file names or a deep
level subdirectory. The following example shows a search for all files named
my_photo1.jpg
within any directory via the file_path.tree_reversed
field
configured to use the reverse parameter in the mapping.
resp = client.search( index="file-path-test", query={ "term": { "file_path.tree_reversed": { "value": "my_photo1.jpg" } } }, ) print(resp)
response = client.search( index: 'file-path-test', body: { query: { term: { 'file_path.tree_reversed' => { value: 'my_photo1.jpg' } } } } ) puts response
const response = await client.search({ index: "file-path-test", query: { term: { "file_path.tree_reversed": { value: "my_photo1.jpg", }, }, }, }); console.log(response);
GET file-path-test/_search { "query": { "term": { "file_path.tree_reversed": { "value": "my_photo1.jpg" } } } }
Viewing the tokens generated with both forward and reverse is instructive in showing the tokens created for the same file path value.
resp = client.indices.analyze( index="file-path-test", analyzer="custom_path_tree", text="/User/alice/photos/2017/05/16/my_photo1.jpg", ) print(resp) resp1 = client.indices.analyze( index="file-path-test", analyzer="custom_path_tree_reversed", text="/User/alice/photos/2017/05/16/my_photo1.jpg", ) print(resp1)
response = client.indices.analyze( index: 'file-path-test', body: { analyzer: 'custom_path_tree', text: '/User/alice/photos/2017/05/16/my_photo1.jpg' } ) puts response response = client.indices.analyze( index: 'file-path-test', body: { analyzer: 'custom_path_tree_reversed', text: '/User/alice/photos/2017/05/16/my_photo1.jpg' } ) puts response
const response = await client.indices.analyze({ index: "file-path-test", analyzer: "custom_path_tree", text: "/User/alice/photos/2017/05/16/my_photo1.jpg", }); console.log(response); const response1 = await client.indices.analyze({ index: "file-path-test", analyzer: "custom_path_tree_reversed", text: "/User/alice/photos/2017/05/16/my_photo1.jpg", }); console.log(response1);
POST file-path-test/_analyze { "analyzer": "custom_path_tree", "text": "/User/alice/photos/2017/05/16/my_photo1.jpg" } POST file-path-test/_analyze { "analyzer": "custom_path_tree_reversed", "text": "/User/alice/photos/2017/05/16/my_photo1.jpg" }
It’s also useful to be able to filter with file paths when combined with other
types of searches, such as this example looking for any files paths with 16
that also must be in Alice’s photo directory.
resp = client.search( index="file-path-test", query={ "bool": { "must": { "match": { "file_path": "16" } }, "filter": { "term": { "file_path.tree": "/User/alice" } } } }, ) print(resp)
response = client.search( index: 'file-path-test', body: { query: { bool: { must: { match: { file_path: '16' } }, filter: { term: { 'file_path.tree' => '/User/alice' } } } } } ) puts response
const response = await client.search({ index: "file-path-test", query: { bool: { must: { match: { file_path: "16", }, }, filter: { term: { "file_path.tree": "/User/alice", }, }, }, }, }); console.log(response);
GET file-path-test/_search { "query": { "bool" : { "must" : { "match" : { "file_path" : "16" } }, "filter": { "term" : { "file_path.tree" : "/User/alice" } } } } }