New

The executive guide to generative AI

Read more

Simple pattern tokenizer

edit

The simple_pattern tokenizer uses a regular expression to capture matching text as terms. The set of regular expression features it supports is more limited than the pattern tokenizer, but the tokenization is generally faster.

This tokenizer does not support splitting the input on a pattern match, unlike the pattern tokenizer. To split on pattern matches using the same restricted regular expression subset, see the simple_pattern_split tokenizer.

This tokenizer uses Lucene regular expressions. For an explanation of the supported features and syntax, see Regular Expression Syntax.

The default pattern is the empty string, which produces no terms. This tokenizer should always be configured with a non-default pattern.

Configuration

edit

The simple_pattern tokenizer accepts the following parameters:

pattern

Lucene regular expression, defaults to the empty string.

Example configuration

edit

This example configures the simple_pattern tokenizer to produce terms that are three-digit numbers

resp = client.indices.create(
    index="my-index-000001",
    settings={
        "analysis": {
            "analyzer": {
                "my_analyzer": {
                    "tokenizer": "my_tokenizer"
                }
            },
            "tokenizer": {
                "my_tokenizer": {
                    "type": "simple_pattern",
                    "pattern": "[0123456789]{3}"
                }
            }
        }
    },
)
print(resp)

resp1 = client.indices.analyze(
    index="my-index-000001",
    analyzer="my_analyzer",
    text="fd-786-335-514-x",
)
print(resp1)
response = client.indices.create(
  index: 'my-index-000001',
  body: {
    settings: {
      analysis: {
        analyzer: {
          my_analyzer: {
            tokenizer: 'my_tokenizer'
          }
        },
        tokenizer: {
          my_tokenizer: {
            type: 'simple_pattern',
            pattern: '[0123456789]{3}'
          }
        }
      }
    }
  }
)
puts response

response = client.indices.analyze(
  index: 'my-index-000001',
  body: {
    analyzer: 'my_analyzer',
    text: 'fd-786-335-514-x'
  }
)
puts response
const response = await client.indices.create({
  index: "my-index-000001",
  settings: {
    analysis: {
      analyzer: {
        my_analyzer: {
          tokenizer: "my_tokenizer",
        },
      },
      tokenizer: {
        my_tokenizer: {
          type: "simple_pattern",
          pattern: "[0123456789]{3}",
        },
      },
    },
  },
});
console.log(response);

const response1 = await client.indices.analyze({
  index: "my-index-000001",
  analyzer: "my_analyzer",
  text: "fd-786-335-514-x",
});
console.log(response1);
PUT my-index-000001
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "my_tokenizer"
        }
      },
      "tokenizer": {
        "my_tokenizer": {
          "type": "simple_pattern",
          "pattern": "[0123456789]{3}"
        }
      }
    }
  }
}

POST my-index-000001/_analyze
{
  "analyzer": "my_analyzer",
  "text": "fd-786-335-514-x"
}

The above example produces these terms:

[ 786, 335, 514 ]
Was this helpful?
Feedback