- Elasticsearch Guide: other versions:
- What’s new in 8.17
- Elasticsearch basics
- Quick starts
- Set up Elasticsearch
- Run Elasticsearch locally
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Data stream lifecycle settings
- Field data cache settings
- Local gateway settings
- Health Diagnostic settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- Inference settings
- License settings
- Machine learning settings
- Monitoring settings
- Node settings
- Networking
- Node query cache settings
- Path settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Set JVM options
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Dynamic mapping
- Explicit mapping
- Runtime fields
- Field data types
- Aggregate metric
- Alias
- Arrays
- Binary
- Boolean
- Completion
- Date
- Date nanoseconds
- Dense vector
- Flattened
- Geopoint
- Geoshape
- Histogram
- IP
- Join
- Keyword
- Nested
- Numeric
- Object
- Pass-through object
- Percolator
- Point
- Range
- Rank feature
- Rank features
- Search-as-you-type
- Semantic text
- Shape
- Sparse vector
- Text
- Token count
- Unsigned long
- Version
- Metadata fields
- Mapping parameters
analyzer
coerce
copy_to
doc_values
dynamic
eager_global_ordinals
enabled
format
ignore_above
index.mapping.ignore_above
ignore_malformed
index
index_options
index_phrases
index_prefixes
meta
fields
normalizer
norms
null_value
position_increment_gap
properties
search_analyzer
similarity
store
subobjects
term_vector
- Mapping limit settings
- Removal of mapping types
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- IP Location
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Terminate
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Ingest pipelines in Search
- Aliases
- Search your data
- Re-ranking
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- Connectors
- EQL
- ES|QL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Cross-cluster replication
- Data store architecture
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Connector APIs
- Create connector
- Delete connector
- Get connector
- List connectors
- Update connector API key id
- Update connector configuration
- Update connector index name
- Update connector features
- Update connector filtering
- Update connector name and description
- Update connector pipeline
- Update connector scheduling
- Update connector service type
- Create connector sync job
- Cancel connector sync job
- Delete connector sync job
- Get connector sync job
- List connector sync jobs
- Check in a connector
- Update connector error
- Update connector last sync stats
- Update connector status
- Check in connector sync job
- Claim connector sync job
- Set connector sync job error
- Set connector sync job stats
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- ES|QL APIs
- Features APIs
- Fleet APIs
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Resolve cluster
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Inference APIs
- Delete inference API
- Get inference API
- Perform inference API
- Create inference API
- Stream inference API
- Update inference API
- AlibabaCloud AI Search inference service
- Amazon Bedrock inference service
- Anthropic inference service
- Azure AI studio inference service
- Azure OpenAI inference service
- Cohere inference service
- Elasticsearch inference service
- ELSER inference service
- Google AI Studio inference service
- Google Vertex AI inference service
- HuggingFace inference service
- Mistral inference service
- OpenAI inference service
- Watsonx inference service
- Info API
- Ingest APIs
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Root API
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Bulk create or update roles API
- Bulk delete roles API
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Query Role
- Get service accounts
- Get service account credentials
- Get Security settings
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Query User
- Update API key
- Update Security settings
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Text structure APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- Optimizations
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Troubleshooting broken repositories
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- Troubleshooting an unbalanced cluster
- Capture diagnostics
- Migration guide
- Release notes
- Elasticsearch version 8.17.1
- Elasticsearch version 8.17.0
- Elasticsearch version 8.16.2
- Elasticsearch version 8.16.1
- Elasticsearch version 8.16.0
- Elasticsearch version 8.15.5
- Elasticsearch version 8.15.4
- Elasticsearch version 8.15.3
- Elasticsearch version 8.15.2
- Elasticsearch version 8.15.1
- Elasticsearch version 8.15.0
- Elasticsearch version 8.14.3
- Elasticsearch version 8.14.2
- Elasticsearch version 8.14.1
- Elasticsearch version 8.14.0
- Elasticsearch version 8.13.4
- Elasticsearch version 8.13.3
- Elasticsearch version 8.13.2
- Elasticsearch version 8.13.1
- Elasticsearch version 8.13.0
- Elasticsearch version 8.12.2
- Elasticsearch version 8.12.1
- Elasticsearch version 8.12.0
- Elasticsearch version 8.11.4
- Elasticsearch version 8.11.3
- Elasticsearch version 8.11.2
- Elasticsearch version 8.11.1
- Elasticsearch version 8.11.0
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Geo-grid processor
editGeo-grid processor
editConverts geo-grid definitions of grid tiles or cells to regular bounding boxes or polygons which describe their shape.
This is useful if there is a need to interact with the tile shapes as spatially indexable fields.
For example the geotile
field value "4/8/3"
could be indexed as a string field, but that would not enable
any spatial operations on it.
Instead, convert it to the value
"POLYGON ((0.0 40.979898069620134, 22.5 40.979898069620134, 22.5 55.77657301866769, 0.0 55.77657301866769, 0.0 40.979898069620134))"
,
which can be indexed as a geo_shape
field.
Table 21. geo_grid processor options
Name | Required | Default | Description |
---|---|---|---|
|
yes |
- |
The field to interpret as a geo-tile. The field format is determined by the |
|
yes |
- |
Three tile formats are understood: |
|
no |
|
The field to assign the polygon shape to, by default |
|
no |
- |
If specified and a parent tile exists, save that tile address to this field. |
|
no |
- |
If specified and children tiles exist, save those tile addresses to this field as an array of strings. |
|
no |
- |
If specified and intersecting non-child tiles exist, save their addresses to this field as an array of strings. |
|
no |
- |
If specified, save the tile precision (zoom) as an integer to this field. |
|
no |
- |
If |
|
no |
"GeoJSON" |
Which format to save the generated polygon in. Either |
|
no |
- |
Description of the processor. Useful for describing the purpose of the processor or its configuration. |
|
no |
- |
Conditionally execute the processor. See Conditionally run a processor. |
|
no |
|
Ignore failures for the processor. See Handling pipeline failures. |
|
no |
- |
Handle failures for the processor. See Handling pipeline failures. |
|
no |
- |
Identifier for the processor. Useful for debugging and metrics. |
To demonstrate the usage of this ingest processor, consider an index called geocells
with a mapping for a field geocell
of type geo_shape
.
In order to populate that index using geotile
and geohex
fields, define
two ingest processors:
resp = client.indices.create( index="geocells", mappings={ "properties": { "geocell": { "type": "geo_shape" } } }, ) print(resp) resp1 = client.ingest.put_pipeline( id="geotile2shape", description="translate rectangular z/x/y geotile to bounding box", processors=[ { "geo_grid": { "field": "geocell", "tile_type": "geotile" } } ], ) print(resp1) resp2 = client.ingest.put_pipeline( id="geohex2shape", description="translate H3 cell to polygon", processors=[ { "geo_grid": { "field": "geocell", "tile_type": "geohex", "target_format": "wkt" } } ], ) print(resp2)
response = client.indices.create( index: 'geocells', body: { mappings: { properties: { geocell: { type: 'geo_shape' } } } } ) puts response response = client.ingest.put_pipeline( id: 'geotile2shape', body: { description: 'translate rectangular z/x/y geotile to bounding box', processors: [ { geo_grid: { field: 'geocell', tile_type: 'geotile' } } ] } ) puts response response = client.ingest.put_pipeline( id: 'geohex2shape', body: { description: 'translate H3 cell to polygon', processors: [ { geo_grid: { field: 'geocell', tile_type: 'geohex', target_format: 'wkt' } } ] } ) puts response
const response = await client.indices.create({ index: "geocells", mappings: { properties: { geocell: { type: "geo_shape", }, }, }, }); console.log(response); const response1 = await client.ingest.putPipeline({ id: "geotile2shape", description: "translate rectangular z/x/y geotile to bounding box", processors: [ { geo_grid: { field: "geocell", tile_type: "geotile", }, }, ], }); console.log(response1); const response2 = await client.ingest.putPipeline({ id: "geohex2shape", description: "translate H3 cell to polygon", processors: [ { geo_grid: { field: "geocell", tile_type: "geohex", target_format: "wkt", }, }, ], }); console.log(response2);
PUT geocells { "mappings": { "properties": { "geocell": { "type": "geo_shape" } } } } PUT _ingest/pipeline/geotile2shape { "description": "translate rectangular z/x/y geotile to bounding box", "processors": [ { "geo_grid": { "field": "geocell", "tile_type": "geotile" } } ] } PUT _ingest/pipeline/geohex2shape { "description": "translate H3 cell to polygon", "processors": [ { "geo_grid": { "field": "geocell", "tile_type": "geohex", "target_format": "wkt" } } ] }
These two pipelines can be used to index documents into the geocells
index.
The geocell
field will be the string version of either a rectangular tile with format z/x/y
or an H3 cell address,
depending on which ingest processor we use when indexing the document.
The resulting geometry will be represented and indexed as a geo_shape
field in either
GeoJSON or the Well-Known Text format.
Example: Rectangular geotile with envelope in GeoJSON
editIn this example a geocell
field with a value defined in z/x/y
format is indexed as a
GeoJSON Envelope since the ingest-processor above was defined with default target_format
.
resp = client.index( index="geocells", id="1", pipeline="geotile2shape", document={ "geocell": "4/8/5" }, ) print(resp) resp1 = client.get( index="geocells", id="1", ) print(resp1)
response = client.index( index: 'geocells', id: 1, pipeline: 'geotile2shape', body: { geocell: '4/8/5' } ) puts response response = client.get( index: 'geocells', id: 1 ) puts response
const response = await client.index({ index: "geocells", id: 1, pipeline: "geotile2shape", document: { geocell: "4/8/5", }, }); console.log(response); const response1 = await client.get({ index: "geocells", id: 1, }); console.log(response1);
PUT geocells/_doc/1?pipeline=geotile2shape { "geocell": "4/8/5" } GET geocells/_doc/1
The response shows how the ingest-processor has replaced the geocell
field with an indexable geo_shape
:
{ "_index": "geocells", "_id": "1", "_version": 1, "_seq_no": 0, "_primary_term": 1, "found": true, "_source": { "geocell": { "type": "Envelope", "coordinates": [ [ 0.0, 55.77657301866769 ], [ 22.5, 40.979898069620134 ] ] } } }
Example: Hexagonal geohex with polygon in WKT format
editIn this example a geocell
field with an H3 string address is indexed as a
WKT Polygon, since this ingest processor explicitly
defined the target_format
.
resp = client.index( index="geocells", id="1", pipeline="geohex2shape", document={ "geocell": "811fbffffffffff" }, ) print(resp) resp1 = client.get( index="geocells", id="1", ) print(resp1)
response = client.index( index: 'geocells', id: 1, pipeline: 'geohex2shape', body: { geocell: '811fbffffffffff' } ) puts response response = client.get( index: 'geocells', id: 1 ) puts response
const response = await client.index({ index: "geocells", id: 1, pipeline: "geohex2shape", document: { geocell: "811fbffffffffff", }, }); console.log(response); const response1 = await client.get({ index: "geocells", id: 1, }); console.log(response1);
PUT geocells/_doc/1?pipeline=geohex2shape { "geocell": "811fbffffffffff" } GET geocells/_doc/1
The response shows how the ingest-processor has replaced the geocell
field with an indexable geo_shape
:
{ "_index": "geocells", "_id": "1", "_version": 1, "_seq_no": 0, "_primary_term": 1, "found": true, "_source": { "geocell": "POLYGON ((1.1885095294564962 49.470279179513454, 2.0265689212828875 45.18424864858389, 7.509948452934623 43.786609335802495, 12.6773177459836 46.40695743262768, 12.345747342333198 50.55427505169064, 6.259687012061477 51.964770150370896, 3.6300085578113794 50.610463307239115, 1.1885095294564962 49.470279179513454))" } }
Example: Enriched tile details
editAs described in geo_grid processor options, there are many other fields that can be set, which will enrich the information available. For example, with H3 tiles there are 7 child tiles, but only the first is fully contained by the parent. The remaining six are only partially overlapping the parent, and there exist a further six non-child tiles that overlap the parent. This can be investigated by adding parent and child additional fields to the ingest-processor:
resp = client.ingest.put_pipeline( id="geohex2shape", description="translate H3 cell to polygon with enriched fields", processors=[ { "geo_grid": { "description": "Ingest H3 cells like '811fbffffffffff' and create polygons", "field": "geocell", "tile_type": "geohex", "target_format": "wkt", "target_field": "shape", "parent_field": "parent", "children_field": "children", "non_children_field": "nonChildren", "precision_field": "precision" } } ], ) print(resp)
response = client.ingest.put_pipeline( id: 'geohex2shape', body: { description: 'translate H3 cell to polygon with enriched fields', processors: [ { geo_grid: { description: "Ingest H3 cells like '811fbffffffffff' and create polygons", field: 'geocell', tile_type: 'geohex', target_format: 'wkt', target_field: 'shape', parent_field: 'parent', children_field: 'children', non_children_field: 'nonChildren', precision_field: 'precision' } } ] } ) puts response
const response = await client.ingest.putPipeline({ id: "geohex2shape", description: "translate H3 cell to polygon with enriched fields", processors: [ { geo_grid: { description: "Ingest H3 cells like '811fbffffffffff' and create polygons", field: "geocell", tile_type: "geohex", target_format: "wkt", target_field: "shape", parent_field: "parent", children_field: "children", non_children_field: "nonChildren", precision_field: "precision", }, }, ], }); console.log(response);
PUT _ingest/pipeline/geohex2shape { "description": "translate H3 cell to polygon with enriched fields", "processors": [ { "geo_grid": { "description": "Ingest H3 cells like '811fbffffffffff' and create polygons", "field": "geocell", "tile_type": "geohex", "target_format": "wkt", "target_field": "shape", "parent_field": "parent", "children_field": "children", "non_children_field": "nonChildren", "precision_field": "precision" } } ] }
Index the document to see a different result:
resp = client.index( index="geocells", id="1", pipeline="geohex2shape", document={ "geocell": "811fbffffffffff" }, ) print(resp) resp1 = client.get( index="geocells", id="1", ) print(resp1)
response = client.index( index: 'geocells', id: 1, pipeline: 'geohex2shape', body: { geocell: '811fbffffffffff' } ) puts response response = client.get( index: 'geocells', id: 1 ) puts response
const response = await client.index({ index: "geocells", id: 1, pipeline: "geohex2shape", document: { geocell: "811fbffffffffff", }, }); console.log(response); const response1 = await client.get({ index: "geocells", id: 1, }); console.log(response1);
PUT geocells/_doc/1?pipeline=geohex2shape { "geocell": "811fbffffffffff" } GET geocells/_doc/1
The response from this index request:
{ "_index": "geocells", "_id": "1", "_version": 1, "_seq_no": 0, "_primary_term": 1, "found": true, "_source": { "parent": "801ffffffffffff", "geocell": "811fbffffffffff", "precision": 1, "shape": "POLYGON ((1.1885095294564962 49.470279179513454, 2.0265689212828875 45.18424864858389, 7.509948452934623 43.786609335802495, 12.6773177459836 46.40695743262768, 12.345747342333198 50.55427505169064, 6.259687012061477 51.964770150370896, 3.6300085578113794 50.610463307239115, 1.1885095294564962 49.470279179513454))", "children": [ "821f87fffffffff", "821f8ffffffffff", "821f97fffffffff", "821f9ffffffffff", "821fa7fffffffff", "821faffffffffff", "821fb7fffffffff" ], "nonChildren": [ "821ea7fffffffff", "82186ffffffffff", "82396ffffffffff", "821f17fffffffff", "821e37fffffffff", "82194ffffffffff" ] } }
This additional information will then enable, for example, creating a visualization of the H3 cell, its children and its intersecting non-children cells.
On this page