- Elasticsearch Guide: other versions:
- What’s new in 8.17
- Elasticsearch basics
- Quick starts
- Set up Elasticsearch
- Run Elasticsearch locally
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Data stream lifecycle settings
- Field data cache settings
- Local gateway settings
- Health Diagnostic settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- Inference settings
- License settings
- Machine learning settings
- Monitoring settings
- Node settings
- Networking
- Node query cache settings
- Path settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Set JVM options
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Dynamic mapping
- Explicit mapping
- Runtime fields
- Field data types
- Aggregate metric
- Alias
- Arrays
- Binary
- Boolean
- Completion
- Date
- Date nanoseconds
- Dense vector
- Flattened
- Geopoint
- Geoshape
- Histogram
- IP
- Join
- Keyword
- Nested
- Numeric
- Object
- Pass-through object
- Percolator
- Point
- Range
- Rank feature
- Rank features
- Search-as-you-type
- Semantic text
- Shape
- Sparse vector
- Text
- Token count
- Unsigned long
- Version
- Metadata fields
- Mapping parameters
analyzer
coerce
copy_to
doc_values
dynamic
eager_global_ordinals
enabled
format
ignore_above
index.mapping.ignore_above
ignore_malformed
index
index_options
index_phrases
index_prefixes
meta
fields
normalizer
norms
null_value
position_increment_gap
properties
search_analyzer
similarity
store
subobjects
term_vector
- Mapping limit settings
- Removal of mapping types
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- IP Location
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Terminate
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Ingest pipelines in Search
- Aliases
- Search your data
- Re-ranking
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- Connectors
- EQL
- ES|QL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Cross-cluster replication
- Data store architecture
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Connector APIs
- Create connector
- Delete connector
- Get connector
- List connectors
- Update connector API key id
- Update connector configuration
- Update connector index name
- Update connector features
- Update connector filtering
- Update connector name and description
- Update connector pipeline
- Update connector scheduling
- Update connector service type
- Create connector sync job
- Cancel connector sync job
- Delete connector sync job
- Get connector sync job
- List connector sync jobs
- Check in a connector
- Update connector error
- Update connector last sync stats
- Update connector status
- Check in connector sync job
- Claim connector sync job
- Set connector sync job error
- Set connector sync job stats
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- ES|QL APIs
- Features APIs
- Fleet APIs
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Resolve cluster
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Inference APIs
- Delete inference API
- Get inference API
- Perform inference API
- Create inference API
- Stream inference API
- Update inference API
- AlibabaCloud AI Search inference service
- Amazon Bedrock inference service
- Anthropic inference service
- Azure AI studio inference service
- Azure OpenAI inference service
- Cohere inference service
- Elasticsearch inference service
- ELSER inference service
- Google AI Studio inference service
- Google Vertex AI inference service
- HuggingFace inference service
- Mistral inference service
- OpenAI inference service
- Watsonx inference service
- Info API
- Ingest APIs
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Root API
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Bulk create or update roles API
- Bulk delete roles API
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Query Role
- Get service accounts
- Get service account credentials
- Get Security settings
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Query User
- Update API key
- Update Security settings
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Text structure APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- Optimizations
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Troubleshooting broken repositories
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- Troubleshooting an unbalanced cluster
- Capture diagnostics
- Migration guide
- Release notes
- Elasticsearch version 8.17.1
- Elasticsearch version 8.17.0
- Elasticsearch version 8.16.2
- Elasticsearch version 8.16.1
- Elasticsearch version 8.16.0
- Elasticsearch version 8.15.5
- Elasticsearch version 8.15.4
- Elasticsearch version 8.15.3
- Elasticsearch version 8.15.2
- Elasticsearch version 8.15.1
- Elasticsearch version 8.15.0
- Elasticsearch version 8.14.3
- Elasticsearch version 8.14.2
- Elasticsearch version 8.14.1
- Elasticsearch version 8.14.0
- Elasticsearch version 8.13.4
- Elasticsearch version 8.13.3
- Elasticsearch version 8.13.2
- Elasticsearch version 8.13.1
- Elasticsearch version 8.13.0
- Elasticsearch version 8.12.2
- Elasticsearch version 8.12.1
- Elasticsearch version 8.12.0
- Elasticsearch version 8.11.4
- Elasticsearch version 8.11.3
- Elasticsearch version 8.11.2
- Elasticsearch version 8.11.1
- Elasticsearch version 8.11.0
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Add remote clusters using API key authentication
editAdd remote clusters using API key authentication
editAPI key authentication enables a local cluster to authenticate itself with a remote cluster via a cross-cluster API key. The API key needs to be created by an administrator of the remote cluster. The local cluster is configured to provide this API key on each request to the remote cluster. The remote cluster verifies the API key and grants access, based on the API key’s privileges.
All cross-cluster requests from the local cluster are bound by the API key’s
privileges, regardless of local users associated with the requests. For example,
if the API key only allows read access to my-index
on the remote cluster, even
a superuser from the local cluster is limited by this constraint. This mechanism
enables the remote cluster’s administrator to have full control over who can
access what data with cross-cluster search and/or cross-cluster replication. The
remote cluster’s administrator can be confident that no access is possible
beyond what is explicitly assigned to the API key.
On the local cluster side, not every local user needs to access every piece of data allowed by the API key. An administrator of the local cluster can further configure additional permission constraints on local users so each user only gets access to the necessary remote data. Note it is only possible to further reduce the permissions allowed by the API key for individual local users. It is impossible to increase the permissions to go beyond what is allowed by the API key.
In this model, cross-cluster operations use a dedicated server port (remote cluster interface) for communication between clusters. A remote cluster must enable this port for local clusters to connect. Configure Transport Layer Security (TLS) for this port to maximize security (as explained in Establish trust with a remote cluster).
The local cluster must trust the remote cluster on the remote cluster interface. This means that the local cluster trusts the remote cluster’s certificate authority (CA) that signs the server certificate used by the remote cluster interface. When establishing a connection, all nodes from the local cluster that participate in cross-cluster communication verify certificates from nodes on the other side, based on the TLS trust configuration.
To add a remote cluster using API key authentication:
If you run into any issues, refer to Troubleshooting.
Prerequisites
edit-
The Elasticsearch security features need to be enabled on both clusters, on every node.
Security is enabled by default. If it’s disabled, set
xpack.security.enabled
totrue
inelasticsearch.yml
. Refer to General security settings. - The nodes of the local and remote clusters must be on version 8.10 or later.
- The local and remote clusters must have an appropriate license. For more information, refer to https://www.elastic.co/subscriptions.
Establish trust with a remote cluster
editIf a remote cluster is part of an Elasticsearch Service deployment, it has a valid certificate by default. You can therefore skip steps related to certificates in these instructions.
On the remote cluster
edit-
Enable the remote cluster server on every node of the remote cluster. In
elasticsearch.yml
:-
Set
remote_cluster_server.enabled
totrue
. -
Configure the bind and publish address for remote cluster server traffic, for
example using
remote_cluster.host
. Without configuring the address, remote cluster traffic may be bound to the local interface, and remote clusters running on other machines can’t connect. -
Optionally, configure the remote server port using
remote_cluster.port
(defaults to9443
).
-
Set
-
Next, generate a certificate authority (CA) and a server certificate/key pair. On one of the nodes of the remote cluster, from the directory where Elasticsearch has been installed:
-
Create a CA, if you don’t have a CA already:
./bin/elasticsearch-certutil ca --pem --out=cross-cluster-ca.zip --pass CA_PASSWORD
Replace
CA_PASSWORD
with the password you want to use for the CA. You can remove the--pass
option and its argument if you are not deploying to a production environment. -
Unzip the generated
cross-cluster-ca.zip
file. This compressed file contains the following content:/ca |_ ca.crt |_ ca.key
-
Generate a certificate and private key pair for the nodes in the remote cluster:
./bin/elasticsearch-certutil cert --out=cross-cluster.p12 --pass=CERT_PASSWORD --ca-cert=ca/ca.crt --ca-key=ca/ca.key --ca-pass=CA_PASSWORD --dns=example.com --ip=127.0.0.1
-
Replace
CA_PASSWORD
with the CA password from the previous step. -
Replace
CERT_PASSWORD
with the password you want to use for the generated private key. -
Use the
--dns
option to specify the relevant DNS name for the certificate. You can specify it multiple times for multiple DNS. -
Use the
--ip
option to specify the relevant IP address for the certificate. You can specify it multiple times for multiple IP addresses.
-
Replace
-
If the remote cluster has multiple nodes, you can either:
- create a single wildcard certificate for all nodes;
- or, create separate certificates for each node either manually or in batch with the silent mode.
-
-
On every node of the remote cluster:
-
Copy the
cross-cluster.p12
file from the earlier step to theconfig
directory. If you didn’t create a wildcard certificate, make sure you copy the correct node-specific p12 file. -
Add following configuration to
elasticsearch.yml
:xpack.security.remote_cluster_server.ssl.enabled: true xpack.security.remote_cluster_server.ssl.keystore.path: cross-cluster.p12
-
Add the SSL keystore password to the Elasticsearch keystore:
./bin/elasticsearch-keystore add xpack.security.remote_cluster_server.ssl.keystore.secure_password
When prompted, enter the
CERT_PASSWORD
from the earlier step.
-
Copy the
- Restart the remote cluster.
- On the remote cluster, generate a cross-cluster API key that provides access to the indices you want to use for cross-cluster search or cross-cluster replication. You can use the Create Cross-Cluster API key API or Kibana.
-
Copy the encoded key (
encoded
in the response) to a safe location. You will need it to connect to the remote cluster later.
On the local cluster
edit-
On every node of the local cluster:
-
Copy the
ca.crt
file generated on the remote cluster earlier into theconfig
directory, renaming the fileremote-cluster-ca.crt
. -
Add following configuration to
elasticsearch.yml
:xpack.security.remote_cluster_client.ssl.enabled: true xpack.security.remote_cluster_client.ssl.certificate_authorities: [ "remote-cluster-ca.crt" ]
-
Add the cross-cluster API key, created on the remote cluster earlier, to the keystore:
./bin/elasticsearch-keystore add cluster.remote.ALIAS.credentials
Replace
ALIAS
with the same name that you will use to create the remote cluster entry later. When prompted, enter the encoded cross-cluster API key created on the remote cluster earlier.
-
Copy the
- Restart the local cluster to load changes to the keystore and settings.
Note: If you are configuring only the cross-cluster API key, you can call the Nodes reload secure settings API, instead of restarting the cluster.
Configuring the remote_cluster_client
settings in elasticsearch.yml
still requires a restart.
Connect to a remote cluster
editYou must have the manage
cluster privilege to connect remote clusters.
The local cluster uses the remote cluster interface to establish communication with remote clusters. The coordinating nodes in the local cluster establish long-lived TCP connections with specific nodes in the remote cluster. Elasticsearch requires these connections to remain open, even if the connections are idle for an extended period.
To add a remote cluster from Stack Management in Kibana:
- Select Remote Clusters from the side navigation.
- Enter a name (cluster alias) for the remote cluster.
-
Specify the Elasticsearch endpoint URL, or the IP address or host name of the remote
cluster followed by the remote cluster port (defaults to
9443
). For example,cluster.es.eastus2.staging.azure.foundit.no:9443
or192.168.1.1:9443
.
Alternatively, use the cluster update settings API
to add a remote cluster. You can also use this API to dynamically configure
remote clusters for every node in the local cluster. To configure remote
clusters on individual nodes in the local cluster, define static settings in
elasticsearch.yml
for each node.
The following request adds a remote cluster with an alias of cluster_one
. This
cluster alias is a unique identifier that represents the connection to the
remote cluster and is used to distinguish between local and remote indices.
resp = client.cluster.put_settings( persistent={ "cluster": { "remote": { "cluster_one": { "seeds": [ "127.0.0.1:{remote-interface-default-port}" ] } } } }, ) print(resp)
const response = await client.cluster.putSettings({ persistent: { cluster: { remote: { cluster_one: { seeds: ["127.0.0.1:{remote-interface-default-port}"], }, }, }, }, }); console.log(response);
PUT /_cluster/settings { "persistent" : { "cluster" : { "remote" : { "cluster_one" : { "seeds" : [ "127.0.0.1:9443" ] } } } } }
The cluster alias of this remote cluster is |
|
Specifies the hostname and remote cluster port of a seed node in the remote cluster. |
You can use the remote cluster info API to verify that the local cluster is successfully connected to the remote cluster:
resp = client.cluster.remote_info() print(resp)
response = client.cluster.remote_info puts response
const response = await client.cluster.remoteInfo(); console.log(response);
GET /_remote/info
The API response indicates that the local cluster is connected to the remote
cluster with the cluster alias cluster_one
:
{ "cluster_one" : { "seeds" : [ "127.0.0.1:9443" ], "connected" : true, "num_nodes_connected" : 1, "max_connections_per_cluster" : 3, "initial_connect_timeout" : "30s", "skip_unavailable" : true, "cluster_credentials": "::es_redacted::", "mode" : "sniff" } }
The number of nodes in the remote cluster the local cluster is connected to. |
|
Indicates whether to skip the remote cluster if searched through cross-cluster search but no nodes are available. |
|
If present, indicates the remote cluster has connected using API key authentication. |
Dynamically configure remote clusters
editUse the cluster update settings API to dynamically
configure remote settings on every node in the cluster. The following request
adds three remote clusters: cluster_one
, cluster_two
, and cluster_three
.
The seeds
parameter specifies the hostname and
remote cluster port (default
9443
) of a seed node in the remote cluster.
The mode
parameter determines the configured connection mode, which defaults
to sniff
. Because cluster_one
doesn’t specify a mode
, it
uses the default. Both cluster_two
and cluster_three
explicitly use
different modes.
resp = client.cluster.put_settings( persistent={ "cluster": { "remote": { "cluster_one": { "seeds": [ "127.0.0.1:{remote-interface-default-port}" ] }, "cluster_two": { "mode": "sniff", "seeds": [ "127.0.0.1:{remote-interface-default-port-plus1}" ], "transport.compress": True, "skip_unavailable": True }, "cluster_three": { "mode": "proxy", "proxy_address": "127.0.0.1:{remote-interface-default-port-plus2}" } } } }, ) print(resp)
const response = await client.cluster.putSettings({ persistent: { cluster: { remote: { cluster_one: { seeds: ["127.0.0.1:{remote-interface-default-port}"], }, cluster_two: { mode: "sniff", seeds: ["127.0.0.1:{remote-interface-default-port-plus1}"], "transport.compress": true, skip_unavailable: true, }, cluster_three: { mode: "proxy", proxy_address: "127.0.0.1:{remote-interface-default-port-plus2}", }, }, }, }, }); console.log(response);
PUT _cluster/settings { "persistent": { "cluster": { "remote": { "cluster_one": { "seeds": [ "127.0.0.1:9443" ] }, "cluster_two": { "mode": "sniff", "seeds": [ "127.0.0.1:9444" ], "transport.compress": true, "skip_unavailable": true }, "cluster_three": { "mode": "proxy", "proxy_address": "127.0.0.1:9445" } } } } }
You can dynamically update settings for a remote cluster after the initial
configuration. The following request updates the compression settings for
cluster_two
, and the compression and ping schedule settings for
cluster_three
.
When the compression or ping schedule settings change, all existing node connections must close and re-open, which can cause in-flight requests to fail.
resp = client.cluster.put_settings( persistent={ "cluster": { "remote": { "cluster_two": { "transport.compress": False }, "cluster_three": { "transport.compress": True, "transport.ping_schedule": "60s" } } } }, ) print(resp)
response = client.cluster.put_settings( body: { persistent: { cluster: { remote: { cluster_two: { 'transport.compress' => false }, cluster_three: { 'transport.compress' => true, 'transport.ping_schedule' => '60s' } } } } } ) puts response
const response = await client.cluster.putSettings({ persistent: { cluster: { remote: { cluster_two: { "transport.compress": false, }, cluster_three: { "transport.compress": true, "transport.ping_schedule": "60s", }, }, }, }, }); console.log(response);
PUT _cluster/settings { "persistent": { "cluster": { "remote": { "cluster_two": { "transport.compress": false }, "cluster_three": { "transport.compress": true, "transport.ping_schedule": "60s" } } } } }
You can delete a remote cluster from the cluster settings by passing null
values for each remote cluster setting. The following request removes
cluster_two
from the cluster settings, leaving cluster_one
and
cluster_three
intact:
resp = client.cluster.put_settings( persistent={ "cluster": { "remote": { "cluster_two": { "mode": None, "seeds": None, "skip_unavailable": None, "transport.compress": None } } } }, ) print(resp)
response = client.cluster.put_settings( body: { persistent: { cluster: { remote: { cluster_two: { mode: nil, seeds: nil, skip_unavailable: nil, 'transport.compress' => nil } } } } } ) puts response
const response = await client.cluster.putSettings({ persistent: { cluster: { remote: { cluster_two: { mode: null, seeds: null, skip_unavailable: null, "transport.compress": null, }, }, }, }, }); console.log(response);
PUT _cluster/settings { "persistent": { "cluster": { "remote": { "cluster_two": { "mode": null, "seeds": null, "skip_unavailable": null, "transport.compress": null } } } } }
Statically configure remote clusters
editIf you specify settings in elasticsearch.yml
, only the nodes with
those settings can connect to the remote cluster and serve remote cluster
requests.
Remote cluster settings that are specified using the
cluster update settings API take precedence over
settings that you specify in elasticsearch.yml
for individual nodes.
In the following example, cluster_one
, cluster_two
, and cluster_three
are
arbitrary cluster aliases representing the connection to each cluster. These
names are subsequently used to distinguish between local and remote indices.
Configure roles and users
editTo use a remote cluster for cross-cluster replication or cross-cluster search, you need to create user roles with remote indices privileges or remote cluster privileges on the local cluster.
You can manage users and roles from Stack Management in Kibana by selecting Security > Roles from the side navigation. You can also use the role management APIs to add, update, remove, and retrieve roles dynamically.
The following examples use the Create or update roles API. You must have at
least the manage_security
cluster privilege to use this API.
The cross-cluster API key used by the local cluster to connect the remote cluster must have sufficient privileges to cover all remote indices privileges required by individual users.
Configure privileges for cross-cluster replication
editAssuming the remote cluster is connected under the name of my_remote_cluster
,
the following request creates a role called remote-replication
on the local
cluster that allows replicating the remote leader-index
index:
resp = client.security.put_role( name="remote-replication", cluster=[ "manage_ccr" ], remote_indices=[ { "clusters": [ "my_remote_cluster" ], "names": [ "leader-index" ], "privileges": [ "cross_cluster_replication" ] } ], ) print(resp)
const response = await client.security.putRole({ name: "remote-replication", cluster: ["manage_ccr"], remote_indices: [ { clusters: ["my_remote_cluster"], names: ["leader-index"], privileges: ["cross_cluster_replication"], }, ], }); console.log(response);
POST /_security/role/remote-replication { "cluster": [ "manage_ccr" ], "remote_indices": [ { "clusters": [ "my_remote_cluster" ], "names": [ "leader-index" ], "privileges": [ "cross_cluster_replication" ] } ] }
After creating the local remote-replication
role, use the
Create or update users API to create a user on the local cluster cluster and
assign the remote-replication
role. For example, the following request assigns
the remote-replication
role to a user named cross-cluster-user
:
resp = client.security.put_user( username="cross-cluster-user", password="l0ng-r4nd0m-p@ssw0rd", roles=[ "remote-replication" ], ) print(resp)
const response = await client.security.putUser({ username: "cross-cluster-user", password: "l0ng-r4nd0m-p@ssw0rd", roles: ["remote-replication"], }); console.log(response);
POST /_security/user/cross-cluster-user { "password" : "l0ng-r4nd0m-p@ssw0rd", "roles" : [ "remote-replication" ] }
Note that you only need to create this user on the local cluster.
Configure privileges for cross-cluster search
editAssuming the remote cluster is connected under the name of my_remote_cluster
,
the following request creates a remote-search
role on the local cluster that
allows searching the remote target-index
index:
resp = client.security.put_role( name="remote-search", remote_indices=[ { "clusters": [ "my_remote_cluster" ], "names": [ "target-index" ], "privileges": [ "read", "read_cross_cluster", "view_index_metadata" ] } ], ) print(resp)
const response = await client.security.putRole({ name: "remote-search", remote_indices: [ { clusters: ["my_remote_cluster"], names: ["target-index"], privileges: ["read", "read_cross_cluster", "view_index_metadata"], }, ], }); console.log(response);
POST /_security/role/remote-search { "remote_indices": [ { "clusters": [ "my_remote_cluster" ], "names": [ "target-index" ], "privileges": [ "read", "read_cross_cluster", "view_index_metadata" ] } ] }
After creating the remote-search
role, use the Create or update users API
to create a user on the local cluster and assign the remote-search
role. For
example, the following request assigns the remote-search
role to a user named
cross-search-user
:
resp = client.security.put_user( username="cross-search-user", password="l0ng-r4nd0m-p@ssw0rd", roles=[ "remote-search" ], ) print(resp)
const response = await client.security.putUser({ username: "cross-search-user", password: "l0ng-r4nd0m-p@ssw0rd", roles: ["remote-search"], }); console.log(response);
POST /_security/user/cross-search-user { "password" : "l0ng-r4nd0m-p@ssw0rd", "roles" : [ "remote-search" ] }
Note that you only need to create this user on the local cluster.
On this page
- Prerequisites
- Establish trust with a remote cluster
- On the remote cluster
- On the local cluster
- Connect to a remote cluster
- Dynamically configure remote clusters
- Statically configure remote clusters
- Configure roles and users
- Configure privileges for cross-cluster replication
- Configure privileges for cross-cluster search