- Elasticsearch Guide: other versions:
- Elasticsearch basics
- Quick starts
- Set up Elasticsearch
- Run Elasticsearch locally
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Health Diagnostic settings
- Index lifecycle management settings
- Data stream lifecycle settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Inference settings
- Monitoring settings
- Nodes
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard allocation, relocation, and recovery
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Search your data
- The search API
- Sort search results
- Paginate search results
- Retrieve selected fields
- Search multiple data streams and indices
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Retrieve inner hits
- Search shard routing
- Searching with query rules
- Search templates
- Retrievers
- kNN search
- Semantic search
- Search across clusters
- Search with synonyms
- Search Applications
- Search analytics
- The search API
- Re-ranking
- Index modules
- Index templates
- Aliases
- Mapping
- Dynamic mapping
- Explicit mapping
- Runtime fields
- Field data types
- Aggregate metric
- Alias
- Arrays
- Binary
- Boolean
- Completion
- Date
- Date nanoseconds
- Dense vector
- Flattened
- Geopoint
- Geoshape
- Histogram
- IP
- Join
- Keyword
- Nested
- Numeric
- Object
- Percolator
- Point
- Range
- Rank feature
- Rank features
- Search-as-you-type
- Semantic text
- Shape
- Sparse vector
- Text
- Token count
- Unsigned long
- Version
- Metadata fields
- Mapping parameters
- Mapping limit settings
- Removal of mapping types
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Ingest pipelines in Search
- Data streams
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Roll up or transform your data
- Query DSL
- EQL
- ES|QL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- Watcher
- Monitor a cluster
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Set up a cluster for high availability
- How to
- Autoscaling
- Snapshot and restore
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Connector APIs
- Create connector
- Delete connector
- Get connector
- List connectors
- Update connector API key id
- Update connector configuration
- Update connector index name
- Update connector features
- Update connector filtering
- Update connector name and description
- Update connector pipeline
- Update connector scheduling
- Update connector service type
- Create connector sync job
- Cancel connector sync job
- Delete connector sync job
- Get connector sync job
- List connector sync jobs
- Check in a connector
- Update connector error
- Update connector last sync stats
- Update connector status
- Check in connector sync job
- Set connector sync job error
- Set connector sync job stats
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- ES|QL APIs
- Features APIs
- Fleet APIs
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Resolve cluster
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Inference APIs
- Delete inference API
- Get inference API
- Perform inference API
- Create inference API
- Amazon Bedrock inference service
- Anthropic inference service
- Azure AI studio inference service
- Azure OpenAI inference service
- Cohere inference service
- Elasticsearch inference service
- ELSER inference service
- Google AI Studio inference service
- Google Vertex AI inference service
- HuggingFace inference service
- Mistral inference service
- OpenAI inference service
- Info API
- Ingest APIs
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Root API
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Bulk create or update roles API
- Bulk delete roles API
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Query Role
- Get service accounts
- Get service account credentials
- Get Security settings
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Query User
- Update API key
- Update Security settings
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Text structure APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Troubleshooting broken repositories
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- Troubleshooting an unbalanced cluster
- Capture diagnostics
- Upgrade Elasticsearch
- Migration guide
- What’s new in 8.15
- Release notes
- Elasticsearch version 8.15.5
- Elasticsearch version 8.15.4
- Elasticsearch version 8.15.3
- Elasticsearch version 8.15.2
- Elasticsearch version 8.15.1
- Elasticsearch version 8.15.0
- Elasticsearch version 8.14.3
- Elasticsearch version 8.14.2
- Elasticsearch version 8.14.1
- Elasticsearch version 8.14.0
- Elasticsearch version 8.13.4
- Elasticsearch version 8.13.3
- Elasticsearch version 8.13.2
- Elasticsearch version 8.13.1
- Elasticsearch version 8.13.0
- Elasticsearch version 8.12.2
- Elasticsearch version 8.12.1
- Elasticsearch version 8.12.0
- Elasticsearch version 8.11.4
- Elasticsearch version 8.11.3
- Elasticsearch version 8.11.2
- Elasticsearch version 8.11.1
- Elasticsearch version 8.11.0
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Create rollup jobs API
editCreate rollup jobs API
editDeprecated in 8.11.0.
Rollups will be removed in a future version. Use downsampling instead.
From 8.15.0 invoking this API in a cluster with no rollup usage will fail with a message about Rollup’s deprecation and planned removal. A cluster either needs to contain a rollup job or a rollup index in order for this API to be allowed to execute.
Creates a rollup job.
Request
editPUT _rollup/job/<job_id>
Prerequisites
edit-
If the Elasticsearch security features are enabled, you must have
manage
ormanage_rollup
cluster privileges to use this API. For more information, see Security privileges.
Description
editThe rollup job configuration contains all the details about how the job should run, when it indexes documents, and what future queries will be able to execute against the rollup index.
There are three main sections to the job configuration: the logistical details about the job (cron schedule, etc), the fields that are used for grouping, and what metrics to collect for each group.
Jobs are created in a STOPPED
state. You can start them with the
start rollup jobs API.
Path parameters
edit-
<job_id>
- (Required, string) Identifier for the rollup job. This can be any alphanumeric string and uniquely identifies the data that is associated with the rollup job. The ID is persistent; it is stored with the rolled up data. If you create a job, let it run for a while, then delete the job, the data that the job rolled up is still be associated with this job ID. You cannot create a new job with the same ID since that could lead to problems with mismatched job configurations.
Request body
edit-
cron
- (Required, string) A cron string which defines the intervals when the rollup job should be executed. When the interval triggers, the indexer attempts to rollup the data in the index pattern. The cron pattern is unrelated to the time interval of the data being rolled up. For example, you may wish to create hourly rollups of your document but to only run the indexer on a daily basis at midnight, as defined by the cron. The cron pattern is defined just like a Watcher cron schedule.
-
groups
-
(Required, object) Defines the grouping fields and aggregations that are defined for this rollup job. These fields will then be available later for aggregating into buckets.
These aggs and fields can be used in any combination. Think of the
groups
configuration as defining a set of tools that can later be used in aggregations to partition the data. Unlike raw data, we have to think ahead to which fields and aggregations might be used. Rollups provide enough flexibility that you simply need to determine which fields are needed, not in what order they are needed.There are three types of groupings currently available:
date_histogram
,histogram
, andterms
.Properties of
groups
-
date_histogram
-
(Required, object) A date histogram group aggregates a
date
field into time-based buckets. This group is mandatory; you currently cannot rollup documents without a timestamp and adate_histogram
group. Thedate_histogram
group has several parameters:Properties of
date_histogram
-
calendar_interval
orfixed_interval
-
(Required, time units) The interval of time buckets to be generated when rolling up. For example,
60m
produces 60 minute (hourly) rollups. This follows standard time formatting syntax as used elsewhere in Elasticsearch. The interval defines the minimum interval that can be aggregated only. If hourly (60m
) intervals are configured, rollup search can execute aggregations with 60m or greater (weekly, monthly, etc) intervals. So define the interval as the smallest unit that you wish to later query. For more information about the difference between calendar and fixed time intervals, see Calendar and fixed intervals.Smaller, more granular intervals take up proportionally more space.
-
delay
-
(Optional,time units) How long to wait before rolling up new documents. By default, the indexer attempts to roll up all data that is available. However, it is not uncommon for data to arrive out of order, sometimes even a few days late. The indexer is unable to deal with data that arrives after a time-span has been rolled up. That is to say, there is no provision to update already-existing rollups.
Instead, you should specify a
delay
that matches the longest period of time you expect out-of-order data to arrive. For example, adelay
of1d
instructs the indexer to roll up documents up tonow - 1d
, which provides a day of buffer time for out-of-order documents to arrive. -
field
- (Required, string) The date field that is to be rolled up.
-
time_zone
-
(Optional, string) Defines what time_zone the rollup documents are stored as.
Unlike raw data, which can shift timezones on the fly, rolled documents have to
be stored with a specific timezone. By default, rollup documents are stored
in
UTC
.
-
-
histogram
-
(Optional, object) The histogram group aggregates one or more numeric fields into numeric histogram intervals.
Properties of
histogram
-
fields
- (Required, array) The set of fields that you wish to build histograms for. All fields specified must be some kind of numeric. Order does not matter.
-
interval
-
(Required, integer) The interval of histogram buckets to be generated when
rolling up. For example, a value of
5
creates buckets that are five units wide (0-5
,5-10
, etc). Note that only one interval can be specified in thehistogram
group, meaning that all fields being grouped via the histogram must share the same interval.
-
-
terms
-
(Optional, object) The terms group can be used on
keyword
or numeric fields to allow bucketing via theterms
aggregation at a later point. The indexer enumerates and stores all values of a field for each time-period. This can be potentially costly for high-cardinality groups such as IP addresses, especially if the time-bucket is particularly sparse.While it is unlikely that a rollup will ever be larger in size than the raw data, defining
terms
groups on multiple high-cardinality fields can effectively reduce the compression of a rollup to a large extent. You should be judicious which high-cardinality fields are included for that reason.Properties of
terms
-
fields
-
(Required, string) The set of fields that you wish to collect terms for. This
array can contain fields that are both
keyword
and numerics. Order does not matter.
-
-
-
index_pattern
-
(Required, string) The index or index pattern to roll up. Supports wildcard-style patterns (
logstash-*
). The job attempts to rollup the entire index or index-pattern.The
index_pattern
cannot be a pattern that would also match the destinationrollup_index
. For example, the patternfoo-*
would match the rollup indexfoo-rollup
. This situation would cause problems because the rollup job would attempt to rollup its own data at runtime. If you attempt to configure a pattern that matches therollup_index
, an exception occurs to prevent this behavior.
-
metrics
-
(Optional, object) Defines the metrics to collect for each grouping tuple. By default, only the doc_counts are collected for each group. To make rollup useful, you will often add metrics like averages, mins, maxes, etc. Metrics are defined on a per-field basis and for each field you configure which metric should be collected.
The
metrics
configuration accepts an array of objects, where each object has two parameters.Properties of metric objects
-
field
- (Required, string) The field to collect metrics for. This must be a numeric of some kind.
-
metrics
-
(Required, array) An array of metrics to collect for the field. At least one
metric must be configured. Acceptable metrics are
min
,max
,sum
,avg
, andvalue_count
.
-
-
page_size
- (Required, integer) The number of bucket results that are processed on each iteration of the rollup indexer. A larger value tends to execute faster, but requires more memory during processing. This value has no effect on how the data is rolled up; it is merely used for tweaking the speed or memory cost of the indexer.
-
rollup_index
- (Required, string) The index that contains the rollup results. The index can be shared with other rollup jobs. The data is stored so that it doesn’t interfere with unrelated jobs.
-
timeout
-
(Optional, time value)
Time to wait for the request to complete. Defaults to
20s
(20 seconds).
Example
editThe following example creates a rollup job named sensor
, targeting the
sensor-*
index pattern:
resp = client.rollup.put_job( id="sensor", index_pattern="sensor-*", rollup_index="sensor_rollup", cron="*/30 * * * * ?", page_size=1000, groups={ "date_histogram": { "field": "timestamp", "fixed_interval": "1h", "delay": "7d" }, "terms": { "fields": [ "node" ] } }, metrics=[ { "field": "temperature", "metrics": [ "min", "max", "sum" ] }, { "field": "voltage", "metrics": [ "avg" ] } ], ) print(resp)
const response = await client.rollup.putJob({ id: "sensor", index_pattern: "sensor-*", rollup_index: "sensor_rollup", cron: "*/30 * * * * ?", page_size: 1000, groups: { date_histogram: { field: "timestamp", fixed_interval: "1h", delay: "7d", }, terms: { fields: ["node"], }, }, metrics: [ { field: "temperature", metrics: ["min", "max", "sum"], }, { field: "voltage", metrics: ["avg"], }, ], }); console.log(response);
PUT _rollup/job/sensor { "index_pattern": "sensor-*", "rollup_index": "sensor_rollup", "cron": "*/30 * * * * ?", "page_size": 1000, "groups": { "date_histogram": { "field": "timestamp", "fixed_interval": "1h", "delay": "7d" }, "terms": { "fields": [ "node" ] } }, "metrics": [ { "field": "temperature", "metrics": [ "min", "max", "sum" ] }, { "field": "voltage", "metrics": [ "avg" ] } ] }
This configuration enables date histograms to be used on the |
|
This configuration defines metrics over two fields: |
When the job is created, you receive the following results:
{ "acknowledged": true }